05.05.2015 L11

Optimal and Learning Control for Autonomous Robots

Lecture 11

Farbod Farshidian Agile & Dexterous Robotics Lab

Swiss National Centre of Competence in Research

Evaluation!

Please fill in the course evaluation and use the opportunity to make free text comments to give us useful feedback!

ETH Zürich

Script Erratum

Algorithm 6 ε -soft, On-Policy Monte Carlo Algorithm choose a constant learning rate, ω choose a positive $\varepsilon \in (0, 1]$ $Q^{\pi}(x, u) \leftarrow \text{arbitrary}$ $\pi \leftarrow$ an arbitrary ε -soft policy **Repeat forever:** (a) generate an episode using π (b) Policy Evaluation for each pair (x, u) appearing in the episode $R \leftarrow$ return following the first occurrence of (x, u) $Q^{\pi}(x,u) \leftarrow Q^{\pi}(x,u) + \omega \left(R - Q^{\pi}(x,u) \right)$ (c) Policy Improvement for each: x in the episode: $u^* \leftarrow \arg \max_u Q^{\pi}(x, u)$ For all $a \in \mathcal{U}(x)$: $\pi(x, u) \leftarrow \begin{cases} \frac{\varepsilon}{|\mathcal{U}(x)|} & \text{if } u \neq u^* \\ 1 - \varepsilon \left(1 - \frac{1}{|\mathcal{U}(x)|}\right) & \text{if } u = u^* \end{cases}$ (d) (optional) decrease ε .

L11 - 3

Recap

ETH Zürich

Brownian Motion

It is stochastic process.

$$\mathbb{P}_{\mathbf{w}}(t,w) = \frac{1}{\sqrt{2\pi\sigma^2 t}} \exp\left(-\frac{(w-\mu t)^2}{2\sigma^2 t}\right)$$

$$\mathbb{E}\{w(t)\} = \mu t$$
$$\mathbb{V}ar\{w(t)\} = \sigma^2 t$$

Brownian Motion (cnt)

$$dw(t) = \lim_{\Delta t \to 0} w(t + \Delta t) - w(t)$$

- 1. The increment process, dw(t), has a Gaussian distribution with the mean and the variance, $\mu\Delta t$ and $\sigma^2\Delta t$ respectively.
- 2. The increment process, dw(t), is statistically independent of w(s) for any $s \leq t$.

Stochastic Differential Equation

The conditional PDF is Gaussian

$$\mathbb{P}_{\mathbf{x}}(t + \Delta t, \mathbf{x} \mid t, \mathbf{y}) = \mathcal{N} \Big(\mathbf{y} + \mathbf{f}(t, \mathbf{y}) \Delta t, \mathbf{g}(t, \mathbf{y}) \mathbf{g}^{T}(t, \mathbf{y}) \Delta t \Big)$$

ETH Zürich

Fokker Planck Equation

I_11 - 8

• Extracting samples: SDE

 $d\mathbf{x} = \mathbf{f}(t, \mathbf{x})dt + \mathbf{g}(t, \mathbf{x})d\mathbf{w}, \qquad \mathcal{N}(\mathbf{0}, \mathbf{I}dt)$

The PDF of process: Fokker Planck equation

$$\mathbb{P}_{\mathbf{x}(\mathbf{t})}(t, \mathbf{x} \mid s, \mathbf{y})$$

$$\partial_t \mathbb{P} = -\nabla_x^T (\mathbf{f} \mathbb{P}) + \frac{1}{2} \operatorname{Tr} \left[\nabla_{xx} (\mathbf{g} \mathbf{g}^T \mathbb{P}) \right]$$

$$\mathbb{P}_{\mathbf{x}(\mathbf{t})}(t = s, \mathbf{x} \mid s, \mathbf{y}) = \delta(\mathbf{x} - \mathbf{y})$$
Initial Condition
The effective covariance
Buchli - OLCAR - 2015

Fokker Planck Equation (cnt)

Buchli - OLCAR - 2015

L11 - 9

Linear Markov Decision Process

Three conditions on the optimal control problem:

1) Quadratic control cost

$$J = E\left\{\Phi(\mathbf{x}(t_f)) + \int_{t_0}^{t_f} q(t, \mathbf{x}) + \frac{1}{2}\mathbf{u}^T \mathbf{R}\mathbf{u} \ dt\right\}$$

2) Control affine system

$$d\mathbf{x} = \mathbf{f}(t, \mathbf{x})dt + \mathbf{g}(t, \mathbf{x}) \left(\mathbf{u}dt + d\mathbf{w}\right), \qquad d\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}dt)$$
$$\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x}) + \mathbf{g}(t, \mathbf{x}) \left(\mathbf{u} + \varepsilon\right), \qquad \varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$$

3)
$$\mathbf{R}\Sigma = \lambda \mathbf{I}$$

Buchli - OLCAR - 2015

L11 - 10

Linear Markov Decision Process (cnt)

Integral by Parts

$$d(f g) = df g + f dg$$

$$\int_{-\infty}^{+\infty} f(x) g^{1}(x) dx = fg(+\infty) - fg(-\infty) - \int_{-\infty}^{+\infty} f^{1}(x) g(x) dx$$

$$\lim_{|x| \to \infty} g(x) = 0 \qquad +\infty$$

$$= -\int_{-\infty}^{1} f^{1}(x) g(x) dx$$

In general case:

$$\int_{-\infty}^{+\infty} f(x) g^i(x) dx = (-1)^i \int_{-\infty}^{+\infty} f^i(x) g(x) dx$$

 $-\infty$

Path Integral Optimal Control

ETH Zürich

Function Inner Product

Inner product for two vectors

$$< \mathbf{u} \mid \mathbf{v} > = \mathbf{u}^T \mathbf{v} = \sum_i u_i v_i$$

Inner product for two functions

$$< f \mid g > = \int_{-\infty}^{\infty} f(x)g(x) \, dx$$

Function Inner Product (cnt.)

• Hermitian Conjugate operator (\mathbf{H}^{\dagger}) of a linear operator \mathbf{H}

$$< \mathbf{u} \mid \mathbf{H}\mathbf{v} > = < \mathbf{H}^{\dagger}\mathbf{u} \mid \mathbf{v} >$$

 $\mathbf{u}^{T}(\mathbf{H}\mathbf{v}) = (\mathbf{H}^{\dagger}\mathbf{u})^{T}\mathbf{v}$

• In the function space $< f \mid \mathbf{H}g > = < \mathbf{H}^{\dagger}f \mid g >$ $\int_{-\infty}^{\infty} f(x) \mathbf{H}g(x) dx = \int_{-\infty}^{\infty} \mathbf{H}^{\dagger}f(x) g(x) dx$ A D R L $-\infty$

Path Integral: Inner Product

Assume the following inner product

$$<\rho\mid\Psi>=\int\rho(t,{\bf x})\Psi(t,{\bf x})d{\bf x}$$

where Ψ is the Desirability function, and ρ is an arbitrary function which satisfies: $\lim_{\|x\|\to\infty} \rho(t,\mathbf{x}) = 0$

Path Integral: Inner Product (cnt)

Assume the linear operator introduced by the Fokker Planck equation

$$\begin{split} \mathbf{H} &= -\frac{1}{\lambda} q + \mathbf{f}^T \nabla_x + \frac{\lambda}{2} \mathrm{Tr}[\mathbf{\Xi} \nabla_{xx}] \\ &= -\frac{1}{\lambda} q + \sum_i \mathbf{f}_i \frac{\partial}{\partial_{x_i}} + \frac{\lambda}{2} \sum_{i,j} \mathbf{\Xi}_{ij} \frac{\partial^2}{\partial_{x_i} \partial_{x_j}} \end{split}$$

What is Hermitian Conjugate of "H" in the function space?

ETH Zürich

Path Integral: Inner Product (cnt)

According to the Hermitian Conjugate definition:

 $<\rho\mid \mathbf{H}[\Psi]>=<\mathbf{H}^{\dagger}[\rho]\mid\Psi>$

By using integral by parts:

$$\begin{split} \mathbf{H}^{\dagger} &= -\frac{1}{\lambda}q - \sum_{i} \frac{\partial \mathbf{f}_{i}}{\partial_{x_{i}}} + \frac{\lambda}{2} \sum_{i,j} \frac{\partial^{2} \mathbf{\Xi}_{ij}}{\partial_{x_{i}} \partial_{x_{j}}} \\ &= -\frac{1}{\lambda}q - \nabla_{x}^{T} \mathbf{f} + \frac{\lambda}{2} \mathrm{Tr}[\nabla_{xx} \mathbf{\Xi}] \end{split}$$

Path Integral: Inner Product (cnt)

Summary:

 $<\rho\mid \mathbf{H}[\Psi]>=<\mathbf{H}^{\dagger}[\rho]\mid\Psi>$

ρ Function

• General idea: if ρ satisfies the following

$$\frac{d}{dt} < \rho \mid \Psi >= 0$$

- 1) ρ can be a solution to an initial value problem $\rho(t = s, \mathbf{x})$
- 2) The following equality holds

$$<\rho \mid \Psi > (t=s) = <\rho \mid \Psi > (t=t_f)$$

ETH Zürich

ρ Function (cnt)

Starting with: $\frac{d}{dt} < \rho \mid \Psi >= 0$

$$\begin{aligned} 0 &= \frac{d}{dt} < \rho \mid \Psi > \\ &= \int \partial_t \Big(\rho(t, \mathbf{x}) \Psi(t, \mathbf{x}) \Big) d\mathbf{x} \end{aligned} \qquad \begin{array}{l} \text{It satisfies the LMDP} \\ &- \partial_t \Psi = \mathrm{H}[\Psi] \end{aligned} \\ &= \int \partial_t \rho(t, \mathbf{x}) \Psi(t, \mathbf{x}) + \rho(t, \mathbf{x}) \partial_t \Psi(t, \mathbf{x}) d\mathbf{x} \end{aligned} \\ &= < \partial_t \rho \mid \Psi > + < \rho \mid \partial_t \Psi > \end{aligned}$$

ρ Function (cnt)

 $0 = <\partial_t \rho \mid \Psi > - <\rho \mid \mathbf{H}[\Psi] >$

Using the Hermitian Conjugate operator

$$0 = <\partial_t \rho \mid \Psi > - < \mathtt{H}^{\dagger}[\rho] \mid \Psi >$$

$$<\partial_t \rho - \mathbf{H}^{\dagger}[\rho] \mid \Psi >= 0$$

A trivial solution is:

$\begin{array}{l} \partial_t \rho = \mathrm{H}^{\dagger}[\rho] \\ = -\frac{1}{\lambda}q\rho - \nabla_x^T(\mathbf{f}\rho) + \frac{\lambda}{2}\mathrm{Tr}[\nabla_{xx}(\Xi\rho)] \\ \end{array}$ D R L Buchli - OLCAR - 2015

Comparison with Fokker Planck

$$\partial_t \mathbb{P} = -\nabla_x^T (\mathbf{f} \mathbb{P}) + \frac{1}{2} \operatorname{Tr} \left[\nabla_{xx} (\mathbf{g} \mathbf{g}^T \mathbb{P}) \right]$$

$$\partial_t \rho = -\frac{1}{\lambda} q \rho - \nabla_x^T (\mathbf{f} \rho) + \frac{\lambda}{2} \operatorname{Tr}[\nabla_{xx}(\mathbf{\Xi} \rho)]$$

It attenuates the probability distribution over time.

Comparison with Fokker Planck (cnt)

$$\partial_t \mathbb{P} = -\nabla_x^T (\mathbf{f} \mathbb{P}) + \frac{1}{2} \operatorname{Tr} \left[\nabla_{xx} (\mathbf{g} \mathbf{g}^T \mathbb{P}) \right]$$
$$\mathbb{P}_{\mathbf{x}(\mathbf{t})}(t = s, \mathbf{x} \mid s, \mathbf{y}) = \delta(\mathbf{x} - \mathbf{y}) \quad \text{The initial condition}$$

$$d\mathbf{x} = \mathbf{f}(t, \mathbf{x})dt + \mathbf{g}(t, \mathbf{x})d\mathbf{w},$$
 $\mathcal{N}(\mathbf{0}, \mathbf{I}dt)$ This can be used to extract samples $\mathbf{x}(s) = \mathbf{y}$

Comparison with Fokker Planck (cnt)

• An initial condition:

$$\begin{split} \partial_t \rho &= -\frac{1}{\lambda} q \rho - \nabla_x^T (\mathbf{f} \rho) + \frac{\lambda}{2} \mathrm{Tr} [\nabla_{xx} (\boldsymbol{\Xi} \rho)] \\ \rho(t = s, \mathbf{x}) &= \delta(\mathbf{x} - \mathbf{y}) \end{split}$$

A method to numerically simulate the solution:

 $d\mathbf{x}(t_i) = \mathbf{f}(t_i, \mathbf{x}(t_i))dt + \mathbf{g}(t_i, \mathbf{x}(t_i))d\mathbf{w}, \qquad \mathbf{x}(t_0 = s) = \mathbf{y} \qquad d\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}dt)$

 $\begin{cases} \mathbf{x}(t_{i+1}) = \mathbf{x}(t_i) + d\mathbf{x}(t_i) & \text{with probability } \exp\left(-\frac{1}{\lambda}qdt\right) \\ \mathbf{x}(t_{i+1}) : \text{annihilation} & \text{with probability } 1 - \exp\left(-\frac{1}{\lambda}qdt\right) \end{cases}$

ρ Function : Features

• It is a MDP: $\tau = {\mathbf{x}(t_0), \mathbf{x}(t_1), \dots, \mathbf{x}(t_N)}$

$$\rho(\tau \mid s, \mathbf{y}) = \prod_{i=0}^{N-1} \rho(t_{i+1}, \mathbf{x}(t_{i+1}) \mid t_i, \mathbf{x}(t_i)), \qquad \mathbf{x}(t_0 = s) = \mathbf{y}$$

The conditioned probability(!!) is

 $\rho(t_{i+1}, \mathbf{x}(t_{i+1}) \mid t_i, \mathbf{x}(t_i)) = e^{-\frac{1}{\lambda}q(t_i, \mathbf{x}(t_i))dt} \mathcal{N}\Big(\mathbf{x}(t_i) + \mathbf{f}(t_i, \mathbf{x}(t_i))dt, \mathbf{\Xi}(t_i, \mathbf{x}(t_i))dt\Big)$

The probability of keeping the sample

Trajectory PDF

L11 - 27

Trajectory joint probability distribution

$$\begin{split} \rho(\tau \mid s, \mathbf{y}) &= \prod_{i=0}^{N-1} e^{-\frac{1}{\lambda}q(t_i, \mathbf{x}(t_i))dt} \mathcal{N}\Big(\mathbf{x}(t_i) + \mathbf{f}(t_i, \mathbf{x}(t_i))dt, \mathbf{\Xi}(t_i, \mathbf{x}(t_i))dt\Big) \\ &= \prod_{i=0}^{N-1} \mathcal{N}\Big(\mathbf{x}(t_i) + \mathbf{f}(t_i, \mathbf{x}(t_i))dt, \mathbf{\Xi}(t_i, \mathbf{x}(t_i))dt\Big) \quad e^{\sum_{i=0}^{N-1} -\frac{1}{\lambda}q(t_i, \mathbf{x}(t_i))dt} \\ &= \mathbb{P}_{uc}(\tau \mid s, \mathbf{y}) \quad e^{\sum_{i=0}^{N-1} -\frac{1}{\lambda}q(t_i, \mathbf{x}(t_i))dt} \end{split}$$

where \mathbb{P}_{uc} is the uncontrolled system trajectory PDF.

$$d\mathbf{x}(t_i) = \mathbf{f}(t_i, \mathbf{x}(t_i))dt + \mathbf{g}(t_i, \mathbf{x}(t_i))d\mathbf{w}, \qquad \mathbf{x}(t_0 = s) = \mathbf{y} \quad d\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}dt)$$

Buchli - Ol CAR - 2015

A Single State PDF

Marginalize the trajectory joint PDF

$$\tau = \{\mathbf{x}(t_0), \mathbf{x}(t_1) \dots, \mathbf{x}(t_n)\}$$

$$\rho(\tau \mid s, \mathbf{y}) = \mathbb{P}_{uc}(\tau \mid s, \mathbf{y}) \stackrel{n-1}{\underset{i=0}{\overset{n-1}{\underset{i=0}{\sum}}}} -\frac{1}{\lambda}q(t_i, \mathbf{x}(t_i))dt$$

Sub-trajectory

Sub-trajectory PDF

$$\rho(\mathbf{x}(t_n) \mid s, \mathbf{y}) = \int \mathbb{P}_{uc}(\tau \mid s, \mathbf{y}) \, e^{\sum_{i=0}^{n-1} -\frac{1}{\lambda}q(t_i, \mathbf{x}(t_i))dt} \, d\mathbf{x}(t_1) \dots d\mathbf{x}(t_{n-1})$$

ρ Function

1) ρ should be a solution to an initial value problem $\rho(\mathbf{x}(t_n) \mid s, \mathbf{y}) = \delta(\mathbf{x} - \mathbf{y})$

2) The following equality holds

 $<\rho \mid \Psi > (t=s) = <\rho \mid \Psi > (t=t_f)$

Time Invariant Inner Product

• Equating the inner product at time s and t_f

$$<\rho \mid \Psi > (t=s) = <\rho \mid \Psi > (t=t_f)$$
$$\int \rho(s, \mathbf{x}_0) \Psi(s, \mathbf{x}_0) d\mathbf{x}_0 = \int \rho(t_f, \mathbf{x}_N) \Psi(t_f, \mathbf{x}_N) d\mathbf{x}_N$$

using the initial condition for ρ

$$\int \delta(\mathbf{x}_0 - \mathbf{y}) \Psi(s, \mathbf{x}_0) d\mathbf{x}_0 = \int \rho(t_f, \mathbf{x}_N) \Psi(t_f, \mathbf{x}_N) d\mathbf{x}_N$$
$$\Psi(s, \mathbf{y}) = \int \rho(t_f, \mathbf{x}_N) \Psi(t_f, \mathbf{x}_N) d\mathbf{x}_N$$

Time Invariant Inner Product (cnt)

using the terminal condition for Ψ

$$\Psi(s, \mathbf{y}) = \int \rho(t_f, \mathbf{x}_N) \Psi(t_f, \mathbf{x}_N) d\mathbf{x}_N$$
$$\Psi(s, \mathbf{y}) = \int \rho(t_f, \mathbf{x}_N) e^{-\frac{1}{\lambda} \Phi(\mathbf{x}_N)} d\mathbf{x}_N$$

We know the PDF of a single state $\rho(t_f, \mathbf{x}_N) = \int \rho(\tau \mid s, \mathbf{y}) \, d\mathbf{x}(t_1) \dots \mathbf{x}(t_{N-1})$ $= \int \mathbb{P}_{uc}(\tau \mid s, \mathbf{y}) \, e^{\sum_{i=0}^{N-1} -\frac{1}{\lambda}q(t_i, \mathbf{x}(t_i))dt} \, d\mathbf{x}(t_1) \dots d\mathbf{x}(t_{N-1})$ D R L

Path Integral

$$\Psi(s,\mathbf{y}) = \int \mathbb{P}_{uc}(\tau \mid s,\mathbf{y}) \, e^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}_N) + \sum_{i=0}^{N-1} q(t_i,\mathbf{x}(t_i)) dt \right)} \, d\mathbf{x}(t_1) \dots d\mathbf{x}(t_{N-1}) d\mathbf{x}_N$$

Equivalently

$$\Psi(s, \mathbf{y}) = \mathbf{E}_{\tau_{uc}} \left\{ e^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_N)) + \sum_{i=0}^{N-1} q(t_i, \mathbf{x}(t_i)) dt \right)} \right\}$$
$$= \mathbf{E}_{\tau_{uc}} \left\{ e^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_f)) + \int_{t_0}^{t_f} q(t, \mathbf{x}) dt \right)} \right\}$$

Samples can be generated by

$$d\mathbf{x} = \mathbf{f}(t, \mathbf{x})dt + \mathbf{g}(t, \mathbf{x})d\mathbf{w}, \qquad d\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}dt), \quad \mathbf{x}(t = s) = \mathbf{y}$$

Closer look at Path Integral formula

 For calculating the Desirability function at each point

$$\Psi(s, \mathbf{y}) = \mathrm{E}_{\tau_{uc}} \left\{ \mathrm{e}^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_f)) + \int_{t_0}^{t_f} q(t, \mathbf{x}) \, dt \right)} \right\}$$

 $d\mathbf{x} = \mathbf{f}(t, \mathbf{x}) dt + \mathbf{g}(t, \mathbf{x}) d\mathbf{w}, \qquad d\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma} dt), \quad \mathbf{x}(t = s) = \mathbf{y}$

- 1) Forward simulate the uncontrolled system from (s, \mathbf{y}) up to t_f
- 2) Integrate the cost over the generated path

У

Path Integral: Optimal Control

Directly calculating the optimal control

$$\mathbf{u}^*(s, \mathbf{y}) = -\mathbf{R}^{-1} \mathbf{g}^T(s, \mathbf{y}) \nabla_y V^*(s, \mathbf{y})$$
$$= \lambda \mathbf{R}^{-1} \mathbf{g}^T(s, \mathbf{y}) \frac{\nabla_y \Psi(s, \mathbf{y})}{\Psi(s, \mathbf{y})}$$

After a tedious calculation

$$\mathbf{u}^{*}(s, \mathbf{y}) = \lim_{\Delta s \to 0} \frac{\mathbf{E}_{\tau_{uc}} \left\{ \int_{s}^{s + \Delta s} d\mathbf{w} \, \mathrm{e}^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_{f})) + \int_{t_{0}}^{t_{f}} q(t, \mathbf{x}) \, dt \right) \right\}}}{\Delta s \mathbf{E}_{\tau_{uc}} \left\{ \mathrm{e}^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_{f})) + \int_{t_{0}}^{t_{f}} q(t, \mathbf{x}) \, dt \right) \right\}} \right\}}$$
$$d\mathbf{x} = \mathbf{f}(t, \mathbf{x}) dt + \mathbf{g}(t, \mathbf{x}) d\mathbf{w}, \qquad d\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma} dt), \quad \mathbf{x}(t = s) =$$
$$\mathbf{R} \, \mathbf{L}$$
Buchli - OLCAR - 2015

Path Integral: Optimal Control

• Using the white noise formulation $\varepsilon = \frac{d\mathbf{w}}{dt}$

$$\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x}) + \mathbf{g}(t, \mathbf{x})\varepsilon, \qquad \varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}), \quad \mathbf{x}(t = s) = \mathbf{y}$$

$$\mathbf{u}^{*}(s, \mathbf{y}) = \frac{\mathrm{E}_{\tau_{uc}} \left\{ \varepsilon \ \mathrm{e}^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_{f})) + \int_{t_{0}}^{t_{f}} q(t, \mathbf{x}) \ dt \right) \right\}}}{\mathrm{E}_{\tau_{uc}} \left\{ \mathrm{e}^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_{f})) + \int_{t_{0}}^{t_{f}} q(t, \mathbf{x}) \ dt \right) \right\}}$$

Path Integral: issues (1)

Inefficient sampling

$$\mathbf{u}^{*}(s, \mathbf{y}) = \mathbf{E}_{\tau_{uc}} \left\{ \varepsilon \frac{\mathrm{e}^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_{f})) + \int_{t_{0}}^{t_{f}} q(t, \mathbf{x}) \ dt \right)}}{\mathrm{E}_{\tau_{uc}} \left\{ \mathrm{e}^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_{f})) + \int_{t_{0}}^{t_{f}} q(t, \mathbf{x}) \ dt \right)} \right\}} \right\}$$

Soft Max

It just has significant value for near optimal solution

What are the chances to hit the optimal solution by a random walk?

Importance Sampling

Path Integral: issues (2)

Point-wise estimation of the optimal controls

$$\mathbf{u}^{*}(s, \mathbf{y}) = \mathbf{E}_{\tau_{uc}} \left\{ \varepsilon \frac{\mathrm{e}^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_{f})) + \int_{t_{0}}^{t_{f}} q(t, \mathbf{x}) \, dt \right)}}{\mathrm{E}_{\tau_{uc}} \left\{ \mathrm{e}^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_{f})) + \int_{t_{0}}^{t_{f}} q(t, \mathbf{x}) \, dt \right)} \right\}} \right\}$$

The optimal control is estimated independently for each point

Does the optimal control change drastically from one point to the other? Function Approximation

Importance Sampling: Example

Double-slit problem

Importance Sampling: Example (cnt)

The original Path Integral sampling approach:

Importance Sampling: Example (cnt)

We would have a better sampling efficiency, if we could have biased the sampling towards each of the slits!

Importance Sampling: Example (cnt)

We would have a better sampling efficiency, if we could have biased the sampling towards each of the slits!

Importance Sampling: Motivations

 $\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x}) + \mathbf{g}(t, \mathbf{x}) \left(u + \varepsilon \right), \qquad \varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}), \quad \mathbf{x}(t = s) = \mathbf{y}$

- 1) We have an initial guess about the optimal solution
- 2) We want to improve the controller incrementally

Importance Sampling: Introduction

Assume the following expectation problem where x is a random variable with probability distribution p(x) and f(x) is an arbitrary deterministic function.

$$\mathcal{E}_p\left[f(x)\right] = \int_{-\infty}^{\infty} f(x) \ p(x) dx$$

We will assume that we have another random variable named y with the probability distribution q(y)and Lets assume that calculating the expectation of an arbitrary function for this random variable is less costly than the previous one.

$$\begin{split} \mathbf{E}_{p}\left[f(x)\right] &= \mathbf{E}_{q}\left[w(y)f(y)\right], \qquad w(y) = \frac{p(y)}{q(y)}\\ \mathbf{E}_{q}\left[w(y)f(y)\right] &= \int_{-\infty}^{\infty} w(y)f(y)q(y) \ dy\\ &= \int_{-\infty}^{\infty} \frac{p(y)}{q(y)}f(y)q(y) \ dy\\ &= \int_{-\infty}^{\infty} p(y)f(y) \ dy = \mathbf{E}_{p}\left[f(x)\right] \end{split}$$
The key is to multiply by the importance weight!

Path Integral: Importance Sampling

$$\mathbf{u}^{*}(s, \mathbf{y}) = \frac{\mathrm{E}_{\tau_{uc}} \left\{ \varepsilon \ \mathrm{e}^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_{f})) + \int_{t_{0}}^{t_{f}} q(t, \mathbf{x}) \ dt \right) \right\}}}{\mathrm{E}_{\tau_{uc}} \left\{ \mathrm{e}^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_{f})) + \int_{t_{0}}^{t_{f}} q(t, \mathbf{x}) \ dt \right)} \right\}}$$
$$\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x}) + \mathbf{g}(t, \mathbf{x})\varepsilon, \quad \varepsilon \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}), \quad \mathbf{x}(t = s) = \mathbf{y}$$
$$\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x}) + \mathbf{g}(t, \mathbf{x}) (u + \varepsilon), \quad \varepsilon \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}), \quad \mathbf{x}(t = s) = \mathbf{y}$$

Path Integral: Importance Sampling

$$\frac{\mathbb{P}_{uc}(\tau \mid s, \mathbf{y})}{\mathbb{P}_{c}(\tau \mid s, \mathbf{y})} = e^{-\frac{1}{\lambda} \int_{t_0}^{t_f} \frac{1}{2} \mathbf{u}^T \mathbf{R} \mathbf{u} dt + \mathbf{u}^T \mathbf{R} d\mathbf{w}}$$

$$\mathbf{u}^{*}(s, \mathbf{y}) = \frac{\mathrm{E}_{\tau_{uc}} \left\{ \varepsilon \ \mathrm{e}^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_{f})) + \int_{t_{0}}^{t_{f}} q(t, \mathbf{x}) \ dt \right) \right\}}}{\mathrm{E}_{\tau_{uc}} \left\{ \mathrm{e}^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_{f})) + \int_{t_{0}}^{t_{f}} q(t, \mathbf{x}) \ dt \right) \right\}}$$

$$\mathbf{E}_{\tau_c} \left\{ \mathbf{e}^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_f)) + \int_{t_0}^{t_f} q(t, \mathbf{x}) + \frac{1}{2} \mathbf{u}^T \mathbf{R} \mathbf{u} \ dt + \mathbf{u}^T \mathbf{R} d\mathbf{w} \right) \right.}$$

Path Integral: Importance Sampling

$$\frac{\mathbb{P}_{uc}(\tau \mid s, \mathbf{y})}{\mathbb{P}_{c}(\tau \mid s, \mathbf{y})} = e^{-\frac{1}{\lambda} \int_{t_0}^{t_f} \frac{1}{2} \mathbf{u}^T \mathbf{R} \mathbf{u} dt + \mathbf{u}^T \mathbf{R} d\mathbf{w}}$$

$$\mathbf{u}^{*}(s, \mathbf{y}) = \frac{E_{\tau_{uc}} \left\{ \varepsilon \ e^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_{f})) + \int_{t_{0}}^{t_{f}} q(t, \mathbf{x}) \ dt \right) \right\}}}{E_{\tau_{uc}} \left\{ e^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_{f})) + \int_{t_{0}}^{t_{f}} q(t, \mathbf{x}) \ dt \right) \right\}}$$

$$\mathbf{E}_{\tau_c} \left\{ (\mathbf{u} + \varepsilon) \mathbf{e}^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_f)) + \int_{t_0}^{t_f} q(t, \mathbf{x}) + \frac{1}{2} \mathbf{u}^T \mathbf{R} \mathbf{u} \, dt + \mathbf{u}^T \mathbf{R} d\mathbf{w} \right) \right\}$$

E

Path Integral: Importance Sampling

$$\mathbf{u}^{*}(s,\mathbf{y}) = \frac{\mathrm{E}_{\tau_{c}}\left\{ (\mathbf{u}+\varepsilon) \ \mathrm{e}^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_{f})) + \int_{t_{0}}^{t_{f}} q(t,\mathbf{x}) + \frac{1}{2}\mathbf{u}^{T}\mathbf{R}\mathbf{u} \ dt + \mathbf{u}^{T}\mathbf{R}d\mathbf{w} \right) \right\}}{\mathrm{E}_{\tau_{c}}\left\{ \mathrm{e}^{-\frac{1}{\lambda} \left(\Phi(\mathbf{x}(t_{f})) + \int_{t_{0}}^{t_{f}} q(t,\mathbf{x}) + \frac{1}{2}\mathbf{u}^{T}\mathbf{R}\mathbf{u} \ dt + \mathbf{u}^{T}\mathbf{R}d\mathbf{w} \right) \right\}}$$
$$R(\tau; s, \mathbf{y}) = \Phi(\mathbf{x}(t_{f})) + \int_{s}^{t_{f}} \left(q(t, \mathbf{x}) + \frac{1}{2}\mathbf{u}^{T}\mathbf{R}\mathbf{u} \right) dt + \int_{s}^{t_{f}} \mathbf{u}^{T}\mathbf{R}d\mathbf{w}$$

It is actually the Return, we have previously used in the RL section!

$$J = E[R(\tau; t_0, \mathbf{x}_0)]$$
$$\mathbf{u}^*(s, \mathbf{y}) = \mathbf{u}(s, \mathbf{y}) + \frac{\mathrm{E}_{\tau_c} \left\{ \varepsilon \ \mathrm{e}^{-\frac{1}{\lambda} R(\tau; s, \mathbf{y})} \right\}}{\mathrm{E}_{\tau_c} \left\{ \mathrm{e}^{-\frac{1}{\lambda} R(\tau; s, \mathbf{y})} \right\}}$$

----- I

Path Integral: IS proof

$$\frac{\mathbb{P}_{uc}(\tau \mid s, \mathbf{y})}{\mathbb{P}_{c}(\tau \mid s, \mathbf{y})} = \frac{\prod_{i=0}^{N-1} \mathcal{N}\left(\mathbf{x}(t_{i}) + \mathbf{f}(t_{i}, \mathbf{x}(t_{i}))dt, \Xi(t_{i}, \mathbf{x}(t_{i}))dt\right)} \quad \text{Ine means are different!}}{\prod_{i=0}^{N-1} \mathcal{N}\left(\mathbf{x}(t_{i}) + \mathbf{f}(t_{i}, \mathbf{x}(t_{i}))dt + \mathbf{g}(t_{i}, \mathbf{x}(t_{i}))\mathbf{u}(t_{i})dt, \Xi(t_{i}, \mathbf{x}(t_{i}))dt\right)}$$

$$\frac{\mathbb{P}_{uc}(\tau \mid s, \mathbf{y})}{\mathbb{P}_{c}(\tau \mid s, \mathbf{y})} = \prod_{i=0}^{N-1} \frac{\exp\left(-\frac{1}{2} \|\mathbf{x}_{i+1} - \mathbf{x}_{i} - \mathbf{f}_{i} dt\|_{\Xi_{i} dt}^{2}\right)}{\exp\left(-\frac{1}{2} \|\mathbf{x}_{i+1} - \mathbf{x}_{i} - \mathbf{f}_{i} dt - \mathbf{g}_{i} \mathbf{u}_{i} dt\|_{\Xi_{i} dt}^{2}\right)}$$

$$\frac{\mathbb{P}_{uc}(\tau \mid s, \mathbf{y})}{\mathbb{P}_{c}(\tau \mid s, \mathbf{y})} = e^{-\frac{1}{\lambda} \int_{t_0}^{t_f} \frac{1}{2} \mathbf{u}^T \mathbf{R} \mathbf{u} dt + \mathbf{u}^T \mathbf{R} d\mathbf{w}}$$

Path Integral: IS summery

$$\mathbf{u}^*(s, \mathbf{y}) = \mathbf{u}(s, \mathbf{y}) + \frac{\mathrm{E}_{\tau_c} \left\{ \varepsilon \ \mathrm{e}^{-\frac{1}{\lambda} R(\tau; s, \mathbf{y})} \right\}}{\mathrm{E}_{\tau_c} \left\{ \mathrm{e}^{-\frac{1}{\lambda} R(\tau; s, \mathbf{y})} \right\}}$$

Optimal Control

 $\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x}) + \mathbf{g}(t, \mathbf{x}) \left(u + \varepsilon \right), \qquad \varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}), \quad \mathbf{x}(t = s) = \mathbf{y} \quad \textbf{Sampling System}$

$$R(\tau; s, \mathbf{y}) = \Phi(\mathbf{x}(t_f)) + \int_s^{t_f} \left(q(t, \mathbf{x}) + \frac{1}{2} \mathbf{u}^T \mathbf{R} \mathbf{u} \right) dt + \int_s^{t_f} \mathbf{u}^T \mathbf{R} d\mathbf{w}$$

Return: integral of the cost over path

Function Approximation

Motivation

ETH Zürich

Function Approximation (cnt)

Approximating the optimal control with a Linear
 Model (linear w.r.t. to the parameters)

Function Approximation (cnt)

Approximation needs to have a criterion.

$$\begin{aligned} \boldsymbol{\theta}_i^* &= \operatorname*{argmax}_{\boldsymbol{\theta}_i} L(\boldsymbol{\theta}_i) \\ &= \operatorname*{argmax}_{\boldsymbol{\theta}_i} \int_{t_0}^{t_f} \int_{\Omega} \frac{1}{2} \| u_i^*(s, \mathbf{y}) - \boldsymbol{\Upsilon}_i^T(s, \mathbf{y}) \boldsymbol{\theta}_i \|_2^2 \ p(s, \mathbf{y}) d\mathbf{y} ds \end{aligned}$$

• Mean Square Error (MSE) criterion • $\int_{t_0}^{t_f} \int_{\Omega} p(s, \mathbf{y}) d\mathbf{y} ds = 1$

Path Integral: Function Approximation

We have two optimization problems:

1) The Optimal Control problem with the solution

$$\mathbf{u}^{*}(s, \mathbf{y}) = \mathbf{u}(s, \mathbf{y}) + \frac{\mathrm{E}_{\tau_{c}} \left\{ \varepsilon \ \mathrm{e}^{-\frac{1}{\lambda} R(\tau; s, \mathbf{y})} \right\}}{\mathrm{E}_{\tau_{c}} \left\{ \mathrm{e}^{-\frac{1}{\lambda} R(\tau; s, \mathbf{y})} \right\}}$$

2) The Function Approximation problem

$$\boldsymbol{\theta}_{i}^{*} = \operatorname*{argmax}_{\boldsymbol{\theta}_{i}} \int_{t_{0}}^{t_{f}} \int_{\Omega} \frac{1}{2} \|\boldsymbol{u}_{i}^{*}(s, \mathbf{y}) - \boldsymbol{\Upsilon}_{i}^{T}(s, \mathbf{y})\boldsymbol{\theta}_{i}\|_{2}^{2} p(s, \mathbf{y}) d\mathbf{y} ds$$

Path Integral: Function Approximation (cnt)

We can define these optimization problems as a single optimization problem.

$$\begin{split} u_i^*(s,\mathbf{y}) &\approx \Upsilon_i^T(s,\mathbf{y}) \boldsymbol{\theta}_i^* & \textbf{Approximated} \\ \boldsymbol{\theta}_i^* &= \boldsymbol{\theta}_{i,c} + \operatorname*{argmin}_{\Delta \boldsymbol{\theta}_i} \int \frac{\mathrm{e}^{-\frac{1}{\lambda}R(\tau;s,\mathbf{y})}}{\mathrm{E}_{\tau_c} \left\{ \mathrm{e}^{-\frac{1}{\lambda}R(\tau;s,\mathbf{y})} \right\}} \|\Upsilon_i^T(s,\mathbf{y})\Delta \boldsymbol{\theta}_i - \varepsilon\|_2^2 \ \mathbb{P}_{\tau_c}(\tau \mid s,\mathbf{y})p(s,\mathbf{y})d\tau d\mathbf{y}ds \\ & \textbf{Linear Regression} \end{split}$$
$$\dot{\mathbf{x}} &= \mathbf{f}(t,\mathbf{x}) + \mathbf{g}(t,\mathbf{x}) \left(u + \varepsilon \right), \qquad \varepsilon \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}), \quad \mathbf{x}(t=s) = \mathbf{y} \\ & u_i(s,\mathbf{y}) \approx \Upsilon_i^T(s,\mathbf{y})\boldsymbol{\theta}_{i,c} \end{aligned}$$

ETH Zürich

Path Integral: FA proof

$$\boldsymbol{\theta}_i^* = \underset{\boldsymbol{\theta}_i}{\operatorname{argmax}} \int_{t_0}^{t_f} \int_{\Omega} \frac{1}{2} \| u_i^*(s, \mathbf{y}) - \boldsymbol{\Upsilon}_i^T(s, \mathbf{y}) \boldsymbol{\theta}_i \|_2^2 \ p(s, \mathbf{y}) d\mathbf{y} ds$$
 Function Approximation problem

$$\frac{\partial L(\boldsymbol{\theta}_{i}^{*})}{\partial \boldsymbol{\theta}_{i}} = \int_{t_{0}}^{t_{f}} \int_{\Omega} \left(u_{i}^{*}(s,\mathbf{y}) - \boldsymbol{\Upsilon}_{i}^{T}(s,\mathbf{y})\boldsymbol{\theta}_{i}^{*} \right) \boldsymbol{\Upsilon}_{i}(s,\mathbf{y}) \ p(s,\mathbf{y}) d\mathbf{y} ds = 0$$

$$\int_{t_{0}}^{t_{f}} \int_{\Omega} \frac{\mathbf{E}_{\tau_{c}} \left\{ \mathbf{e}^{-\frac{1}{\lambda}R(\tau;s,\mathbf{y})} \right\}}{\mathbf{E}_{\tau_{c}} \left\{ \mathbf{e}^{-\frac{1}{\lambda}R(\tau;s,\mathbf{y})} \right\}} \left(u_{i}^{*}(s,\mathbf{y}) - \boldsymbol{\Upsilon}_{i}^{T}(s,\mathbf{y})\boldsymbol{\theta}_{i}^{*} \right) \boldsymbol{\Upsilon}_{i}(s,\mathbf{y}) \ p(s,\mathbf{y}) d\mathbf{y} ds = 0$$

$$\int_{t_0}^{t_f} \int_{\Omega} \mathcal{E}_{\tau_c} \left\{ \frac{\mathrm{e}^{-\frac{1}{\lambda}R(\tau;s,\mathbf{y})}}{\mathcal{E}_{\tau_c} \left\{ \mathrm{e}^{-\frac{1}{\lambda}R(\tau;s,\mathbf{y})} \right\}} \left(u_i^*(s,\mathbf{y}) - \Upsilon_i^T(s,\mathbf{y})\boldsymbol{\theta}_i^* \right) \Upsilon_i(s,\mathbf{y}) \ p(s,\mathbf{y}) \right\} d\mathbf{y} ds = 0$$

Path Integral: FA proof (cnt)

$$\int \frac{\mathrm{e}^{-\frac{1}{\lambda}R(\tau;s,\mathbf{y})}}{\mathrm{E}_{\tau_c}\left\{\mathrm{e}^{-\frac{1}{\lambda}R(\tau;s,\mathbf{y})}\right\}} \left(u_i^*(s,\mathbf{y}) - \Upsilon_i^T(s,\mathbf{y})\boldsymbol{\theta}_i^*\right) \Upsilon_i(s,\mathbf{y}) \ \mathbb{P}_{\tau_c}(\tau \mid s,\mathbf{y}) p(s,\mathbf{y}) d\tau d\mathbf{y} ds = 0$$

$$\int \frac{\mathrm{e}^{-\frac{1}{\lambda}R(\tau;s,\mathbf{y})}}{\mathrm{E}_{\tau_{c}}\left\{\mathrm{e}^{-\frac{1}{\lambda}R(\tau;s,\mathbf{y})}\right\}} \left(\underbrace{u_{i}^{*}-u_{i}-\varepsilon+u_{i}+\varepsilon}_{\mathbf{y}}-\boldsymbol{\Upsilon}_{i}^{T}\boldsymbol{\theta}_{i}^{*}\right)\boldsymbol{\Upsilon}_{i}(s,\mathbf{y}) \ \mathbb{P}_{\tau_{c}}(\tau \mid s,\mathbf{y})p(s,\mathbf{y})d\tau d\mathbf{y}ds = 0$$

Path Integral: FA proof (cnt)

$$\int \frac{\mathrm{e}^{-\frac{1}{\lambda}R(\tau;s,\mathbf{y})}}{\mathrm{E}_{\tau_c}\left\{\mathrm{e}^{-\frac{1}{\lambda}R(\tau;s,\mathbf{y})}\right\}} \Big(u_i(s,\mathbf{y}) + \varepsilon - \boldsymbol{\Upsilon}_i^T(s,\mathbf{y})\boldsymbol{\theta}_i^*\Big) \boldsymbol{\Upsilon}_i(s,\mathbf{y}) \ \mathbb{P}_{\tau_c}(\tau \mid s,\mathbf{y})p(s,\mathbf{y})d\tau d\mathbf{y}ds = 0$$

It is equivalent to the following optimization

$$\boldsymbol{\theta}_{i}^{*} = \underset{\boldsymbol{\theta}_{i}}{\operatorname{argmin}} \int \frac{\mathrm{e}^{-\frac{1}{\lambda}R(\tau;s,\mathbf{y})}}{\mathrm{E}_{\tau_{c}}\left\{\mathrm{e}^{-\frac{1}{\lambda}R(\tau;s,\mathbf{y})}\right\}} \|\boldsymbol{\Upsilon}_{i}^{T}(s,\mathbf{y})\boldsymbol{\theta}_{i} - u_{i}(s,\mathbf{y}) - \varepsilon\|_{2}^{2} \mathbb{P}_{\tau_{c}}(\tau \mid s,\mathbf{y})p(s,\mathbf{y})d\tau d\mathbf{y}ds$$

If we use the same function approximation for $u_i(s, \mathbf{y}) \approx \Upsilon_i^T(s, \mathbf{y}) \boldsymbol{\theta}_{i,c}$

$$\boldsymbol{\theta}_{i}^{*} = \boldsymbol{\theta}_{i,c} + \underset{\Delta \boldsymbol{\theta}_{i}}{\operatorname{argmin}} \int \frac{\mathrm{e}^{-\frac{1}{\lambda}R(\tau;s,\mathbf{y})}}{\mathrm{E}_{\tau_{c}}\left\{\mathrm{e}^{-\frac{1}{\lambda}R(\tau;s,\mathbf{y})}\right\}} \|\boldsymbol{\Upsilon}_{i}^{T}(s,\mathbf{y})\Delta\boldsymbol{\theta}_{i} - \varepsilon\|_{2}^{2} \ \mathbb{P}_{\tau_{c}}(\tau \mid s,\mathbf{y})p(s,\mathbf{y})d\tau d\mathbf{y}ds$$

Thanks!

ETH Zürich