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Introduction

In exercise 1, you designed an ILQC controller that was able to control a quadrotor for performing agile

maneuvers such as flying to a defined point and/or passing through some predefined via-points. ILQC

is a model-based optimal control approach which combines both the trajectory and the controller design

into a single problem. In exercise 1, you assumed complete knowledge about the system model, without

any uncertainty in the system parameters. In general, model-based algorithms like ILQC show superior

performance in simulation, but their performance in real physical applications is limited by the accuracy

of the system model. In fact, our commonly used system models are usually intentionally designed in a

simplistic way - in order to keep complexity and the dimensions of the state-space low and in order to

maintain useful mathematical properties. These limitations typically restrict the performance of model-

based methods on real robots.

Another approach to simultaneously finding reference trajectories and controllers is to use model-free

machine learning techniques, like the Path Integral Policy Improvement methods that were presented in

the lecture. However, major drawbacks of existing learning algorithms are that their success highly depends

on the quality of the initial guess (since they are all local methods), and they just partially exploit the

domain knowledge of the system designer, i.e. a known system model.

In this exercise, you will combine the benefits of model-based an model-free approaches. You will adapt a

model-based optimal controller (that you derived in exercise 1 using ILQC) using a PI2 learning algorithm.

This in fact is a real scenario when we are dealing with an actual robot. Although often we have a model of

the robot dynamics, the model is based on some assumptions and simplifications. Therefore, the designed

controller based on this model performs noticeably different on the real robot. In this case, we implement

a learning algorithm which adapts the model-based controller on the fly.

Software Structure

In this exericse, we use the same quadrotor platform as in exercise 1. Details about the system description,

state, inputs and dynamics can be found in the exercise 1 handout. The MATLAB code structure, as given

in main_ex3.m, is given below. Generally the steps executed in the main function are similar to those in

exercise 1:

� Task = Task_Design() defines a task including start and goal state, etc., for both the initializing

ILQC controller and the Path Integral Learning problem. For the latter, it additionally sets the number

of gaussian basis functions, the number of rollouts per iteration, the maximum number of iterations,
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the exploration noise and how many (of the best) rollouts per iteration are kept and reused in the

next iteration. For making your implementation work, you should not have to change this function.

� load(’Quadcopter_Model.mat’,’Model’) defines the dynamics of the nominal quadrotor model

which is used for calculating an initial ILQC controller.

� Task.cost = Cost_Design(Model.param.mQ,Task) generates the cost functions for both the

ILQC and the path integral learning. Note that the cost functions are identical for both problems

parts - in other words, both algorithm optimize the same cost functions.

� LQR_Design(Model,Task) designs an LQR controller as initial guess for the ILQC controller, similar

to exercise 1, using the nominal model. ILQC_Design(Model,Task,Initial_Controller,@Quad_Simulator)

subsequently designs an ILQC controller for the given task and the nominal model.

� In BaseFcnTrans(ILQC_Controller,Task.n_gaussian), the ILQC controller is transformed into

basis-function representation, which later serves as initialization to the path integral learning algo-

rithm. ILQC provides a time-indexed state feedback plus feedforward. Representing the initial ILQC

controller in terms of a parameter matrix θ which acts on the basis functions drastically reduces the

number of control parameters.

� load(’Quadcopter_Model_perturbed.mat’,’Model’) defines the dynamics of the ‘real’ quadro-

tor for generating samples for the Path Integral learning steps.

� PIs_Learning(Model_perturbed,Task,ReducedController) implements the PI2 learning. In

every iteration, it carries out the steps described in Algorithm 10 from chapter 3 in the script. It calls

the function PI2_Update(Task,bsim_out,bR), which calculates updates for the parameter-matrix

θ in every iteration.

� Sample_Rollout(Model,Task,Controller): generates a sample rollout of the specified model

and Task subject to a certain controller. The learned controller is shown in a visualization similar to

exercise 1.

� Lastly, a plot is generated which shows the cost improvement over the number of PI2 learning

iterations.

Exercise 3 Problem Statement

The key idea: connecting ILQC with PI2 In exercise 1, you completed the function

ILQC_Design(Model,Task,Initial_Controller,@Quad_Simulator), which calculates the full ILQC
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controller for the specified problem. In the first part, use your own ILQC controller implementation and

the nominal quadrotor model to generate a suitable initial guess for the learning algorithm. As backup, we

provide a protected version of a working ILQC implementation, however, we strongly encourage you to use

your own design.

PI2 Update function implementation Now, we put aside the assumption of complete model knowledge.

The ‘real’ robotic system is now simulated by a model that is perturbed in the parameters. In the learning

part, those true system parameters are unknown to the algorithm, however, it can draw samples from the

simulator imitating the ‘real’ robot.

In this exercise, you are asked to implement a part of the General PI2 algorithm, which is Algorithm 10 in

the lecture notes. The protected function called

[LearnedController,..., ...] = PIs_Learning(Model_perturbed,Task,ReducedController)

provides the framework for the algorithm, including the initialization, the exploration-noise annealing and

drawing samples from the perturbed system. However, the function

delta_theta = PI2_Update(Task,batch_sim_out,batch_cost)

must be completed. It gets called by PIs_Learning and spans the missing part of the lecture notes’

Algorithm 10 (shown in Algorithm 1 of this exercise sheet).

Algorithm 1 Excerpt of General PI2 Algorithm

for the ith control input do
for each time, s do

Calculate the Return from starting time s for the kth rollout:
R(τk(s)) = Φ(x(tf )) +

∫ tf
s

(
q(t,x) + 1

2uTRu
)
dt

Calculate α from starting time s for the kth rollout:
αk(s) = exp(− 1

λ
R(τk(s)))/

∑K
k=1 exp(−

1
λ
R(τk(s)))

Calculate the time varying parameter increment ∆θi(s):

∆θi(s) =
∑K

k=1 α
k(s)Υ(s)ΥT (s)

ΥT (s)Υ(s)
εki (s)

end for
for the jth column of ∆θi matrix, ∆θi,j do

Time-averaging the parameter vector

∆θi,j =

(
tf∫
t0

∆θi,j(s) ◦ Υ(s)ds

)
·
/ tf∫
t0

Υ(s)ds

end for
end for
Return ∆θ

3



OLCAR - Exercise 3 - Path Integral Policy Improvement
Handout: 12.05.2015
Due: 26.05.2015

A D R L

Your task is to fill in the missing parts of the function PI2_Update. Its input arguments are the following:

� Task is a struct which contains all task specific parameters, similar to Exercise 1. Additionally it

contains PI2 specific parameters like num_rollouts, n_basefct, the exploration noise std_noise,

etc.

� batch_sim_out assume we are given a problem with state-space dimension (n× 1), input-space

dimensions (p× 1), g gaussian basis functions and r rollouts per iteration. Then, batch_sim_out is

a struct array of dimensions (r × 1) which contains all rollouts’ simulation data in batch format. It

has the fields

– .t vector of discrete simulation times for every rollout

– .x state trajectory for every rollout

– .u input trajectory for every rollout

– .Controller The controller structure. It contains the fields

* @BaseFnc(t, x) a function which returns a matrix of dimensions ((n+1)·g×length(t)),

indicating the basis function activation for every element of t.

* .theta the parameter matrix of dimensions ((g · (n+ 1)) × p)

– .eps contains the scaled noise for parameter perturbation and is of dimensions

((g · (n+ 1)) × p× length(t)). The noise gets reduced automatically as the number of rollouts

increases.

� batch_cost a matrix of dimensions (r × lenght(t)) which holds the cost at every timestep for

every rollout.

Furthermore, the function already contains code for calculating the exponentiated cost, as well as the two

additional functions vec2mat(vec) and mat2vec(mat). The latter two functions are provided because the

quadrotor simulator requires the parameter matrix θ to be given in a different shape than in Algorithm 10

in the lecture notes. Therefore, conversions are required at the beginning and the end of the function you

are to implement. For example, calling something like

temp = sim_out.Controller.BaseFnc(sim_out.t,sim_out.x) will give a vector-like parameter rep-

resentation, which first needs to be converted by calling vec2mat(temp). Similarly, at the end of your

implementation, your delta_theta needs to be converted back to the vector-like representation by calling

mat2vec(delta_theta).
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Additional Questions

Answer the following questions in .pdf format with max. 5 sentences per question and upload the document

to the course website.

1. How much cost improvement did you obtain using PI2 learning? (answer in 1 sentence and attach

one of your cost-plots)

2. How does the exploration noise (Task.std_noise) affect the learning curve? What happens if you

decrease/increase it?

3. The tuning parameter Task.num_reuse specifies how many (of the best) rollouts are saved, carried

over and reused in the next learning iteration. Why does it make sense to keep some of the best

rollouts for the next update?

4. How does the quality of your initial guess affect the PI2 learning? For example, what happens if you

limit your ILQC iterations to only 1?

5. While executing your program, you might have noticed that the cost is not always strictly decreasing

during learning. What is your explanation for this behaviour?

Deliverables

On the course website http://www.adrl.ethz.ch/doku.php/adrl:education:lecture:fs2015 a skele-

ton of the matlab software can be downloaded. Please complete the missing parts and upload your

{PI2_Update.m} file through the appropriate form on the website. Additionally, upload a .pdf with the

answers to the posed questions (no more than 5 sentences per question, max. 1 A4 page in total). All this

material must be uploaded by 26.05.2015, 11:59 pm.

The doodle poll for the interview sign up is available at https://ethz.doodle.com/bsi7gvkycvrmht6t
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