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Class logistics

Exercise 2 out today (available online)

due - 6.5.2015
interview - 8.5.2015
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Lecture 9 Goals

Y Model free RL,
% Monte Carlo,

% Q learning
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Sample based RL

Monte Carlo Method

Buchli - OLCAR - 2015 Zuirich
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Monte-Carlo Methods

Monte-Carlo Method (Sutton definition):
average (values) over random samples of
actual returns
Episodic learning

Ri=ri+riq1 + 10+ ...+ 71N
Viile) ="E{Ry |- =%} =F {Z akrn+k | By = :(:}
k=0

Expectation is a weighted average!
Approximate E by ‘sampling’

1
%5 AD R LE(x) =2 Ploas =3 s T, ~ P(x)
Z Buchli -SOLCAR 22015 E'H Zurich
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Approximate V by sampling

* Do N rollouts
* Average return observed after first visit of each
state

Mz

1
ZRZCI?U, N 7“ +ozrn+1+a rn+2+ )

=1

o0
Viz)=FE{Rs |Zza =2} =F {Z * otk | Zn = .r}

k=0

Nr Nt

VN YY@ Ttk

zlkO

‘'sampling approach to calculate expectation’
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MC Policy Evaluation

Expectation is an average! Ry =ri+repn 472+

VW(I) = E{an | Tp = -L'} =FE {Zaknwk | Ln = I}

k=0

Initialize:

T < policy to be evaluated

V < an arbitrary state-value function

Returns(s) < an empty list, for all s€ S C
Repeat Forever: ;

(a)
(b)

—O

—/

®
Generate an episode using 7 < O
For each state s appearing in the episode: o
R < return following the first occurrence of s :
Append R to Returns(s)
V(s) «+ average(Returns(s)) l N

@DRL

1
E(x)=) Pz ~Y -1,
¥ Buchli - OLCAR - 2015 S N E'H Zuirich
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Tree view on DP/MC

O (a) 5
O o
® T
® Y ! i ' a
O r g

O < QC.D a
Ot ot g
.C) O .....Q.....
o ® r
N ;): > °e“DP - evaluate all states and/
: é .é or all choices: full backups
.  MC - only evaluate states
é - 1 seen in an episode
T opportunity and problem: can

terminal state  fOCUS’ on relevant states, might

%5 ADRL not explore...
Buchli - OLCAR - 2015 E'H Zurich
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‘Monte Carlo’
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Soap bubbles
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fo(;wnién Motion and Potential T he or; 1

The discovery that these two apparently unrelated branches
of physics are in some sense mathematically equivalent has

led to a new subject known as probabilistic potential theory

P by Reuben Hersh and Richard J. Griego i

[Hersh and Griego, Scientific American, | 969]
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ELASTIC MEMBRANE is stretched across a stiff, closed frame that is twisted into some
fixed shape in space in this illustration of the role of harmonic functions in potential theory.
The configuration of such a membrane is given by the height h of each point P on the surface
of the membrane. Directly below each P on the membrane is a point P on the base plane,
which has coordinates x, y. Besides being continuous, the function h(x, ¥) has the following
simple property: If P is a point in the x, y plane, and T is a small circle with its center at P,
then the value of h at P (that is, the height of the membrane above P) equals the average of
the values of h for all points on the circle I'. This is called the mean-value property, and a
continuous function h possessing this property is called a harmonic function, In this case
the position of P (the poiot on the membrane above P) is determined by the sum of the
tension forces exerted on P by the surrounding portion of the membrane (arrows). If the
membrane is in equilibrium, these forces must cancel, so that the number of nearby ele-
vations greater than that of P must be matched by corresponding elevations lower than that
of P, and the average must be just equal to the elevation of P, namely, the function h at P.

Buchli - OLCAR - 2015
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Harmonic functions

ETH i
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Random Walks

20 DEGREES

10 DEGREES

17 DEGREES
- 5 DEGREES

DISTRIBUTION OF HEAT in a homogeneous solid body at thermal equilibrium is an-
other physical problem that involves a harmonic function. Since the temperature at any
given point in such a body does not change with time, the temperature at that point must
equal the average temperature over the surface of a small surrounding sphere. In other
words, the temperature T is a harmonic function of the coordinates x, ¥, z of the point P.
The problem can be solved by means of the probabilistic theory of the Brownian motion of
a hypothetical particle starting at P and hitting the surface of the body at a random point Q.

ADR.L
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Soap bubble MC

Soap bubbles can be described

b)l ha onic funCtiOnS h (P) ) find height on of arbitrary point on

surface

... can be expressed as
expectation!

h(P) = E(h(Fy,;))

h(P ) height of point where random walk in
X,y plane started in P’ crosses boundary

h(z,y)

expectation approximated by sampling

B(h(B) ~ Y h(P)

> Pb If interested only in part of the surface, only
need to ‘play’ MC ‘game’ for this region
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Remember Policy evaluation
(part of DP solution)

Vir1(s) = Exirs +7Vk(5t+1)‘5t:5}
Z S, a)z ss' ss’ fYVk(S,)]

requires transition probabllltles

Initialize:
T < policy to be evaluated
V < an arbitrary state-value function
Returns(s) + an empty list, for all s€ S
Repeat Forever:

(a) Generate an episode using 7 Need Only ‘experlenced’
(b) For each state s appearing in the episode:
R < return following the first occurrence of s rewards

Append R to Returns(s)
V(s) + average(Returns(s))

Yields state value function, still need

éﬁ ADRL model to find polic
Buchli - OLCAR - 20|5P Y E'H Zurich
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MC Estimation of
Action Values!

Have seen MC estimation for state value
FunctionV
Recall: To get controls fromV need model
(complete transition probabilities)

Can we find state-value function Q with
MC Methods?

Problem: Might not visit all (relevant)

%EA DRL state-action pairs
Buchli - OLCAR - 2015 E'H Zurich
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Approximate Q by
sampling
* Do N rollouts

* Average return observed after first visit
of each state-action pair

N

QN (z,u) ~ ZRZ (vym) = Z(r%+ar;+1+a2r;+2+...)
zl

‘'sampling approach to calculate expectation’
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Model free Q evaluation

| -step update / recursive

O (ma)y=E{ R, | 2s =0 =7}

lim OFAE,5) = Q (&, u)
Buchli - OLCAR - 2015 E'H Zurich
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Q Update Rule

Update (‘learning’) rule:

Qivs1(2,u) = Qn + w1 - (Rys1 — Qi (z, )

Update step/Learning rate wN+1 =1/(N+1)

In practice can keep learning rate constant
... or decrease with a ‘schedule’

;E ADRL
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Have action-value function
(Q), but need policy

Model free GPI
using Q?

Buchli - OLCAR - 2015 Zuirich
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MC GPI

evaluation

T need full MC PE step at
0 —>0 each iteration

Improvement

E I E I E I E
T — Q™ >m = Q™ oM — ... — Q)

;E ADRL
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Q)
éel\l'gorithm 4 Generalized Policy Iteration (GPI) using the action value function Q™ (z, u)

e(é\o 1. Initialization
& Q™ (z,u) €R

2. Policy Evaluation (PE)

repeat

L.;"r sigct ithze X, uel do
Ty
Qﬂ- (mi u) > Z:L‘l sz' R;;Lg;’ + 04 Zu ™ (m,’ u) Qﬂ. (xli u)]

end for

until "individual PE criterion satisfied” |
< .Pollcy Improvement -~ mo del require CI
policy-stable < true
for z € X do
b+ m(x)
m(z) + argmax D PrLIRE, + aV* ()]
o

sy
if b # m(x) then
policy-stable«—false

end if Can we C|O th'S
g evaluation model free?

if (policy-stable == true) then
stop;

else
go to 2.

A D endif

Buchli - OLCAR - 2015 B B NN Ziirich
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Model free policy
Improvement

In a state X, try all controls

Update policy as

7(z) = argmax Q™ (x, u)

Buchli - OLCAR - 2015 Zuirich
Tuesday 21 April 15
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Naive Monte Carlo Policy Improvement

Expectation is an average! = "t T Tt T T2 o TN

o0
Q" (z,u) = Ex{Ry | 2n = 2, 4n = 4} :E{Zakrn+k|mn = 2, Up =u}

k=0

Algorithm 5 Naive Monte Carlo Algorithm Assummg Explorlng Starts

Initialize, forallz € X, u e U R hmant
Q(z,u) « arbitrary

m <— an arbitrary deterministic policy

Repe?,t_ﬁnr.guer_z ~ R I—
(a) Exploring start: select random pair (:1: u)

(b) Select a policy ™ and generate anepusoe 0000 T Bl Y iy DN N TN s ePiSOdiC
(c) Sample-based Policy Evaluation:
for each pair z,u appearing in the episode:
R < return following the first occurrence of z,u

Qz,u) «~ Q+w- (R—-Q(z,u))

| (d) Policy improvement: .
‘; m(z) < arg max, Q(z,u) |

= — ——

greedy

Monte Carlo Pl assuming exploring starts!

;5 ADRL
Buchli - OLCAR - 2015 E'H Zurich
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Issues of MC Control

Two unrealistic assumptions in ‘vanilla’ MC GPI

* #1 - Infinite number of rollouts in PE step

* #2 - Exploring starts: start from all state-action
pairs

;E ADRL
Buchli - OLCAR - 2015 E'H Zurich
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Issues of MC Control

Two unrealistic assumptions in ‘vanilla’ MC GPI

e #I| - Infinite number of rollouts in PE step

Don’t do infinitely many roll-outs
Update value function and policy after one
episode

;,E ADRL
Buchli - OLCAR - 2015 E'H Zurich
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Maintaining exploration

Non-realistic assumption #2: exploring starts!
How to maintain exploration!?

Consider: What'’s best policy given an
estimated Value function?
= Greedy, deterministic

How will the ‘sampled’ roll-outs look like!?
= always the ‘same’ (or at least very similar)

;,E ADRL
Buchli - OLCAR - 2015 E'H Zurich
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Exploration vs.
Exploitation

Important: Exploring policy
should not be optimal!
Why?
Exploring starts: Start at all
possible state-action pairs

even better: Exploration policy
should not be deterministic, non-
zero probability for all x-u pairs

;E ADRL
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On-Policy Monte Carlo
Control with &-soft Policy

* On-policy *Soft

Buchli - OLCAR - 2015 Zuirich
Tuesday 21 April 15
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On/off policy

2 ways to ensure exploration:

* On-policy: Use the same policy for
exploration and execution
= ‘special requirements for policy’
e Off-policy: Use a different policy for
exploration and for execution

= need to ensure ‘coherence’ between

executing and exploring policy

;,E ADRL
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e-greedy Policy

€ ¥ .
il T U(2) for the non-greedy action
l—& (1 |u(1$)|) for the greedy action

* With high probability choose action that
maximizes est. action value (greedy)

* with small (but not 0) prob. choose a non-
greedy action

;E ADRL
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e-greedy Policy
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Replacement for exploring start: Soft Exploration Policy

Ve e X
Yuel

Soft policy: m(x,u) >0,

-

\_

E
p(non-greedy) = 1f(z)] ¢€>0

otherwise greedy

~N

J

r

-

& (T, u) {

£

U(z)|

1
1-e¢ (1 ~ W@

if u # u*
) if u=u*

E
& m(r,u) > W for all states and actions

% DRL
Buchli - OLCAR - 2015

policy is €-soft
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Proof of policy improvement
with €-greedy policy

s ]{R | B = )= Zn (z,u)Q" (z,u)
[n+1 7
= @ ZQ“ z,u) + (1 — €) max Q" (z, u)

avg. is less or equal max:

max Dz ul = Z( @ 1)_ €|L{(a:) Q" (=, )

/' | welghts
{”(“”’“) |u<m>|} ‘

T non-negative weights’, sum to |

;Q AbUKL
Buchli - OLCAR - 2015 E'H Ztirich
Tuesday
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T, U 2 . . ’
( 1)_;“(“’” ‘non-negative weights’, sum to |
Proof
5 (T, %) — w7y =5 (T, u) Zie)
- ] —e = e = Li—e
- -
—l_gzu:w(a:,u) 1—521;1
1 W@
=T -1 4@I=1

;E ADRL
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z,u) — )
l—e¢

Q" (z,u)

max @ (z,0) 2 3

g - m(z,u) — ]W%ﬂ -
— Eu[::ﬁ,],w LR | i) > U@ zu:Q (z,u) + (1 —¢) Z - Q" (z,u)

u

RHS &= o W W
U)| ;Q (z,u) — U@)| Zu:Q (z,u) + ;w(:c,u)Q (k)= Zu:f;r(g;, u)Q™ (z, u)

= B wse el ga—=2}2 Zw(x,u)Q"(x,u)

U[n+1 1~V

,lll‘l

= E won {Bn|lzn=2}>V™z) QED (I)
A D R L u['n+1,...]N7r
% Buchli - OLCAR - 2015 E'H Zurich
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2nd part of proof -

In the second step of the proof, we should show that the expected accumulated reward for the case

that we perform the first two steps according to the policy 7’ then following the policy 7 is greater
orequalto E , . {Rn|z,=x}. Since this proof is very similar to the one, we just did, we

s o, SeleRge ]
will skip this proof and just use the result.

Ufp, n41] VT {Rn | Tn = IIJ} > B Up~T {R’n | Tn = :13}
: T

Ulp+2,... |~ Un+1,...]"™

> V7 (z)

Following the same procedure, we can replace the policy to the end.

j~m’ {an | In = .’II} > VW(-'E)

Uln,n+1,...
V™ (z) > V()
ADRL
Buchli - OLCAR - 2015 E'H Zuirich
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Algorithm 6 &-soft, On-Policy Monte Carlo Algorithm

choose a constant learning rate, w
choose a positive € € (0, 1]
Q™ (z,u) « arbitrary
T 4— an arbitrary e-soft policy
Repeat forever: episodic learning
(@) generate an episode using 7r>
" (b) Policy Evaluation
for each pair (z,u) appearing in the episode
R <+ return following the first occurrence of (z,u)
QW(.’I),’U,) A Q(m,u) +w (R - QW(:L‘,’U,))
(c) Policy Improvement
for each: z in the episode:
u* + argmax, Q™ (z,u)
For all a € U(z):

m if u # u*

1 P
1_8(1_IU(2)I) ifu=u

m(z,u) +

(d) (optional) decrease ¢.

O

)
—/

l terminal state

ADRL

Buchli - OLCAR - 2015
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Q-learning

Combine ideas from Monte Carlo and
Dynamic Programming

MC: Learn direct from samples
DP: Update estimate based on neighboring estimates
(don’t wait for full episode)

;,E ADRL
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Exhaustive

Dynamic search
programming

full
backups A
sample Y Monte Carlo
backups O
P Q learning s
O
- . - ¢
shallow bootstrapping, A deep E
backups backups

;E ADRL I
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Q-learning

Optimal Bellman Equation

ul

O (ca,un) =.E {rn +amaxQ*(z',u) | zn =z, up = u}

sample Q to estimate expectation
1 N
2 _ } : @ /
Q(ZE,U) — N (Tn—l_amgXQ(xi)u))
=1
formulated recursively (as before):
QY (zn, un) = Q*(xn, Un) + Wit [r:fl + amax Q' (z,,,u,) — Q*(zn, un)]

Un,

estimates Q independent of policy: off-policy!

(as long as Q explores sufficiently)

;E ADRL
Buchli - OLCAR - 2015 E'H Zurich
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Q-learning

Algorithm 7 Q-Learning
Initialize Q(x,u) arbitrarily
Repeat for each episode:
Initialize x
repeat (for each step of episode):
Choose u from x using policy derived from ()
(e.g., € — greedy)
Take action u, observe r, 2’
Q(z,u) + Q(z,u) + w[r + ymaxy Q(z',u') — Q(x, u)]
T < 2’
until z is terminal

;5 ADRL
Buchli - OLCAR - 2015 E'H Zurich
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http://www.cse.unsw.edu.au/~cs94 | /ml/RL2/index.html

Random exploration

;,E ADRL
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Value function approximation

Instead of learning full Q(x,u), approximate it.
O(s,a;0)=0Q"(s,a)

Linear approximator
Neural Network

Learn 0 using reward samples

Buchli - OLCAR - 2015 Zuirich
Tuesday 21 April 15
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SHARE DATA IN
OUTBREAKS
FOVEC OPEN ACCess
to sequences and more

PMEEATT

INNOVATIONS IN

Ihe microbiome

natureé

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

Self-taught Al software
attains human-level
\ performance invideo games

QUANTUM PHYSICS O NATURE.COM/NATURE

AGIANTINTHE  TELEPORTATION
EARLY UNIVERSE FORTWO

\ supermassive black hole Transferring two properties |
at aredshiftof 6.3 of a single photon
PAGES 490 & 512 PAGES 4314508 : LA

Buchli - OLCAR - 2015
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http://dx.doi.org/10.1038/nature 4236 L9 - 62

26 FEBRUARY 2015 | VOL 518 | NATURE | §29

Human-level control through deep reinforcement
learning

Volodymyr Mnih'*, Koray Kavukcuoglu'*, David Silver'*, Andrei A. Rusu’, Joel Veness', Marc G. Bellemare', Alex Graves',

Martin Riedmiller', Andreas K. Fidjeland’, Georg Ostrovski', Stig Petersen', Charles Beattie', Amir Sadik’, loannis Antonoglou’,
Helen King', Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis'
e —— - T ———

§
doi:10.1038/nature14236 |

|) Basic idea: Q-learning ...

2) ... using Value function approximation
(using deep network)

3) using emulator to generate samples

4) ...a couple of other tricks...
(preprocessing, experience replay, ...)

;E ADRL
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MIGH SCORE

ADRL
Buchli - OLCAR - 2015 E'H Zuirich
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[Mnih, 2015]
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Goal - RL Problem

The goal of the agent is to interact with the emulator by selecting actions in a way
that maximizes future rewards. We make the standard assumption that future rewards
are discounted by a factor of y per time-step (y was sg;t to 0.99 throughout), and

define the future discounted return at time tas R; = Z y’l ~!ry,in which T'is the

t =t
time-step at which the game terminates. We define the optimal action-value

function Q”(s,a) as the maximum expected return achievable by following any
policy, after seeing some sequence s and then taking some action a, Q*(s,a) =
max, [K[R;|s; = s,a; = a,n| in which 7 is a policy mapping sequences to actions (or
distributions over actions).

;5 ADRL
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Basic RL

The optimal action-value function obeys an important identity known as the
Bellman equation. This is based on the following intuition: if the optimal value
Q" (s',a") of the sequence s’ at the next time-step was known for all possible actions
a’, then the optimal strategy is to select the action 2" maximizing the expected value

of r+yQ*(s.,a'):

Q*(s,a) =EEy r+yn}2;axQ*(s',a’)|s,a

The basic idea behind many reinforcement learning algorithms is to estimate
the action-value function by using the Bellman equation as an iterative update,
Qi+ (s,a) =Ky [r+y maxy Q;(s',a’)|s,a]. Such value iteration algorithms converge
to the optimal action-value function, Q, — Q" asi— c0. In practice, this basic approach

;5 ADRL
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[Mnih, 2015]

Al

Value approximation

reward. More formally, we use a deep convolutional neural network to
approximate the optimal action-value function

Q" (s,a)= me]E[rt'*'WtH +}’2"t+2+ .. |se=s, a,=a, 77:],

The basic idea behind many reinforcement learning algorithms is to estimate
the action-value function by using the Bellman equation as an iterative update,
Qi+ (s,a) =IE¢[r+7y maxy Q;(s',a")|s,a]. Such value iteration algorithms converge
to the optimal action-value function, Q,— Q" asi— co. In practice, this basicapproach
is impractical, because the action-value function is estimated separately for each
sequence, without any generalization. Instead, it is common to use a function approx-
imator to estimate the action-value function, Q(s,a; 0)=Q"(s,a). In the reinforce-
ment learning community this is typically a linear function approximator, but

sometimes a nonlinear function approximator is used instead, such as a neural
network. We refer to a neural network function approximator with weights 0 as a
Q-network. A Q-network can be trained by adjusting the parameters 0; at iteration
i to reduce the mean-squared error in the Bellman equation, where the optimal
target values r +7 max, Q*(s',a’) are substituted with approximate target values
y=r+y maxy Q(s,a’;0; ), using parameters 0, from some previous iteration.
This leads to a sequence of loss functions L;(0;) that changes at each iteration i,

Li(Oi) - Es,a,r [([Es’ b’|$,a] om Q(s,a; 01))2]

L9 - 67
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Loss function

Note that the targets depend on the network weights; this is in contrast with the
targets used for supervised learning, which are fixed before learning begins. At
each stage of optimization, we hold the parameters from the previous iteration 0;
fixed when optimizing the ith loss function L;(0;), resulting in a sequence of well-
defined optimization problems. The final term is the variance of the targets, which
does not depend on the parameters 0; that we are currently optimizing, and may
therefore be ignored. Differentiating the loss function with respect to the weights
we arrive at the following gradient:

_ __

Vg,-L(O,') - Es,a,r,s’ [’(f"‘ Y m;ax Q(s’,a’; 01._ ) — AN

|
!
|
\
N

———

Rather than computing the full expectations in the above gradient, it is often
computationally expedient to optimize the loss function by stochastic gradient
descent. The familiar Q-learning algorithm' can be recovered in this framework

by updating the weights after every time step, replacing the expectations using
single samples, and setting 0." =0,_;.

;5 ADRL
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More details on policy

(basic Q-learning)

Note that this algorithm is model-free: it solves the reinforcement learning task
directly using samples from the emulator, without explicitly estimating the reward
and transition dynamics P(r,s'|s,a). It is also off-policy: it learns about the greedy
policy a=argmax , Q(s,a’; 0), while following a behaviour distribution that ensures
adequate exploration of the state space. In practice, the behaviour distribution is
often selected by an ¢-greedy policy that follows the greedy policy with probability
1 — ¢ and selects a random action with probability e.

;5 ADRL
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Problem size

055 image.display

O | -

210x160x128

éiggDizL
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Partially observed system

Because the agent only observes the current screen, the task is partially observed*
and many emulator states are perceptually aliased (that is, it is impossible to fully
understand the current situation from only the current screen x;). Therefore,
sequences of actions and observations, s; =x;,a;,%2,...,4:—1,Xs, are input to the
algorithm, which then learns game strategies depending upon these sequences. All
sequences in the emulator are assumed to terminate in a finite number of time-
steps. This formalism gives rise to a large but finite Markov decision process (MDP)
in which each sequence is a distinct state. As a result, we can apply standard rein-
forcement learning methods for MDPs, simply by using the complete sequence s;
as the state representation at time f.
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Preprocessing

Preprocessing. Working directly with raw Atari 2600 frames, which are 210 X 160
pixel images with a 128-colour palette, can be demanding in terms of computation
and memory requirements. We apply a basic preprocessing step aimed at reducing
the input dimensionality and dealing with some artefacts of the Atari 2600 emu-
lator. First, to encode a single frame we take the maximum value for each pixel colour
value over the frame being encoded and the previous frame. This was necessary to
remove flickering that is present in games where some objects appear only in even
frames while other objects appear only in odd frames, an artefact caused by the
limited number of sprites Atari 2600 can display at once. Second, we then extract
the Y channel, also known as luminance, from the RGB frame and rescale it to
84 X 84. The function ¢ from algorithm 1 described below applies this preprocess-
ing to the m most recent frames and stacks them to produce the input to the
Q-function, in which m = 4, although the algorithm is robust to different values of
m (for example, 3 or 5).
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Value function approximation

Instead of learning full Q(x,u), approximate it.

O(s,a;0)=Q"(s,a)

concepts such as object categories directly from raw sensory data. We
use one particularly successful architecture, the deep convolutional
network'’, which uses hierarchical layers of tiled convolutional filters
to mimic the effects of receptive fields—inspired by Hubel and Wiesel’s
seminal work on feedforward processing in early visual cortex'*—thereby
exploiting the local spatial correlations present in images, and building

in robustness to natural transformations such as changes of viewpoint
or scale.

Learn 0 using reward samples
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Model architecture. There are several possible ways of parameterizing Q using a
neural network. Because Q maps history—action pairs to scalar estimates of their
Q-value, the history and the action have been used as inputs to the neural network
by some previous approaches®**°. The main drawback of this type of architecture
is that a separate forward pass is required to compute the Q-value of each action,
resulting in a cost that scales linearly with the number of actions. We instead use an
architecture in which there is a separate output unit for each possible action, and
only the state representation is an input to the neural network. The outputs cor-
respond to the predicted Q-values of the individual actions for the input state. The
main advantage of this type of architecture is the ability to compute Q-values for all
possible actions in a given state with only a single forward pass through the network.
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Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, = ¢(s;)
For t=1,T do
With probability ¢ select a random action a,
otherwise select a; =argmax, Q(¢(s¢),a; 0)
Execute action a, in emulator and observe reward r, and image x; ; ,
Set s;+ 1 =5;,a4,%+1 and preprocess @, ; =P (s;+1)
Store transition (¢,,a;,r,¢,, ) in D
Sample random minibatch of transitions ((f)-,a}-,rj,d)j N 1) from D

T if episode terminates at step j+ 1
Setyj N rj+7 maxy Q (¢j+ laa,; 0~ ) otherwise
2
Perform a gradient descent step on (yj — Q(¢ A ; 9)) with respect to the
network parameters 0
Every C steps reset Q= Q
End For
End For
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ADRL
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DQN - discussion

% state dimensionality DQN vs robotics problems
% randomness/predictability/repeatability?

% signal of reward / task specification

* difficulty of task

% use of emulator vs. sampling in the physical world

mance over the course of training). Nevertheless, games demanding more
temporally extended planning strategies still constitute a major chal-
lenge for all existing agents including DQN (for example, Montezuma’s
Revenge).
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