Optimal and Learning Control for Autonomous Robots Lecture 8

Jonas Buchli
Agile \& Dexterous Robotics Lab

Class logistics

Interviews on Friday!

Exercise 2 hand-out next week!

Chapter 2 of script today

Lecture 8 Goals

\star Policy improvement theorem \star Policy iteration, evaluation, value iteration \star Model free RL, Monte Carlo

Policy improvement

A policy π^{\prime} is better than policy π if

$$
\begin{array}{ll}
\forall x \in \mathbf{X}: & V^{\pi^{\prime}}(x) \geq V^{\pi}(x) \\
\exists x \in \mathbf{X}: & V^{\pi^{\prime}}(x)>V^{\pi}(x)
\end{array}
$$

EM H zürich

Policy improvement theorem

Assume two policies $\pi \pi^{\prime}$
Identical for all states, but $\mathrm{x} \quad \pi^{\prime}(x) \neq \pi(x)$
If in $\mathrm{I}(!)$ chosen state $\mathrm{x} \quad Q^{\pi}\left(x, \pi^{\prime}(x)\right) \geq V^{\pi}(x)$ then π^{\prime} is a better policy than π

Policy improvement theorem:
what if improvement in all states

$$
\stackrel{?}{\Rightarrow} \quad V^{\pi^{\prime}} \geq V^{\pi}
$$

Policy improvement theorem proof
Preliminaries:
consider deterministic policy

$$
\mu(x)=a_{s}, \quad \text { where: } \pi\left(a_{s} \mid x\right)=1 .
$$

To show:

$$
Q^{\pi}\left(x, \mu^{\prime}(x)\right) \geq V^{\pi}(x) \quad \Rightarrow \quad V^{\pi^{\prime}} \geq V^{\pi}
$$

Policy improvement theorem proof

$$
V^{\pi}(x) \leq Q^{\pi}\left(x, \mu^{\prime}(x)\right)=E_{\pi}\left\{r_{n}+\alpha V^{\pi}\left(x_{n+1}\right) \mid u_{n}=\mu^{\prime}(x), x_{n}=x\right\}
$$

substitute $V^{\pi}\left(x_{n+1}\right)$ by $Q^{\pi}\left(x_{n+1}, \mu^{\prime}\left(x_{n+1}\right)\right)$

$$
\begin{aligned}
& V^{\pi}(x) \leq E_{\pi}\left\{r_{n}+\alpha Q^{\pi}\left(x_{n+1}, \mu^{\prime}\left(x_{n+1}\right)\right) \mid u_{n}=\mu^{\prime}(x), x_{n}=x\right\} \quad \text { greedy } \\
& V^{\pi}(x) \leq E_{\pi}\left\{r_{n}+\alpha E_{\pi}\left\{r_{n+1}+\alpha V^{\pi}\left(x_{n+2}\right) \mid u_{n+1}=\mu^{\prime}\left(x^{\prime}\right), x_{n+1}=x^{\prime}\right\} \mid u_{n}=\mu^{\prime}(x), x_{n}=x\right\} \\
& V^{\pi}(x) \leq E_{\pi}\left\{r_{n}+\alpha r_{n+1}+\alpha^{2} V^{\pi}\left(x_{n+2}\right) \mid u_{n+1}=\mu^{\prime}\left(x^{\prime}\right), x_{n+1}=x^{\prime}, u_{n}=\mu^{\prime}(x), x_{n}=x\right\}
\end{aligned}
$$

simplify notation

$$
V^{\pi}(x) \leq E_{\substack{u_{[n, n+1]} \sim \pi^{\prime} \\ u_{[n+2, \ldots]}}}\left\{r_{n}+\alpha r_{n+1}+\alpha^{2} V^{\pi}\left(x_{n+2}\right) \mid x_{n}=x\right\}
$$

repeat argument to infinity

$$
V^{\pi}(x) \leq E_{\pi}\left\{r_{n}+\alpha r_{n+1}+\alpha^{2} r_{n+2}+\alpha^{3} r_{n+3}+\ldots \mid u_{[n, n+1, n+2, \ldots]} \sim \pi^{\prime}, x_{n}=x\right\}
$$

A D R

Policy improvement theorem proof - conclusion

Policy π^{\prime} is followed for all time steps
thus omit condition on $u_{[n, n+1, n+2, \ldots]} \sim \pi^{\prime}$ yields $V^{\pi^{\prime}}$

$$
\begin{aligned}
& V^{\pi}(x) \leq E_{\pi^{\prime}}\left\{r_{n}+\alpha r_{n+1}+\alpha^{2} r_{n+2}+\alpha^{3} r_{n+3}+\ldots \mid x_{n}=x\right\}=V^{\pi^{\prime}}(x) \\
& V^{\pi}(x) \leq V^{\pi^{\prime}}(x)
\end{aligned}
$$

QED

Greedy policy update

Consider the following greedy policy update rule

$$
\begin{aligned}
\pi^{\prime}(x) & =\underset{u}{\operatorname{argmax}} Q^{\pi}(x, u) \\
& =\arg \max _{u} E\left\{r_{n}+\alpha V^{\pi}\left(x_{n+1}\right) \mid x_{n}=x, u_{n}=u\right\}
\end{aligned}
$$

PIT: greedy policy update will always yield better policy

Convergence of update

What if new policy is strictly equal to the old one:

$$
V^{\pi^{\prime}}=V^{\pi}
$$

using policy update rule

$$
\begin{aligned}
V^{\pi^{\prime}}(x) & =\max _{u} E\left\{r_{n}+\alpha V^{\pi^{\prime}}\left(x_{n+1}\right) \mid x_{n}=x, u_{n}=u\right\} \\
& =\max _{u} \sum_{x^{\prime}} \mathcal{P}_{x x^{\prime}}^{u}\left[\mathcal{R}_{x x^{\prime}}^{u}+\alpha V^{\pi^{\prime}}\left(x^{\prime}\right)\right]
\end{aligned}
$$

\rightarrow yields optimal Bellman Equation
$\Rightarrow \mathrm{PI}$ will give better policy, unless Policy is

Policy iteration

Using Policy Evaluation and Policy improvement, find optimal policy iteratively

Policy iteration

I) Policy evaluation (complete!)
2) Policy improvement
3) repeat

$$
\begin{gathered}
\pi_{0} \xrightarrow{\mathrm{E}} V^{\pi_{0}} \xrightarrow{\mathrm{I}} \pi_{1} \xrightarrow{\mathrm{E}} V^{\pi_{1}} \xrightarrow{\mathrm{I}} \pi_{2} \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi^{*} \xrightarrow{\mathrm{E}} V^{*} \\
\text { discount factor }<\mathrm{I} \text { or } \\
\text { termination under policy } \\
\text { (convergence of cost-to-go!) }
\end{gathered}
$$

[SB] Ch 4.1
select $V(x) \in \Re$ and $\pi(x) \in \mathbf{U}$ arbitrarily for all $x \in \mathbf{X}$
2. Policy evaluation
repeat
$\Delta \leftarrow 0$
for each: $x \in \mathcal{X}$
$v \leftarrow V(x)$
$V(x) \leftarrow \sum_{u} \pi(x, u) \sum_{x^{\prime}} \mathcal{P}_{x x^{\prime}}^{\pi(x)}\left[\mathcal{R}_{x x^{\prime}}^{u}+\alpha V\left(x^{\prime}\right)\right]$
$\Delta \leftarrow \max (\Delta,|v-V(x)|)$
until $\Delta<\theta$ (a small positive number)
3. Policy Improvement
policyIsStable \leftarrow true
for $x \in \mathcal{X}$ do
$b \leftarrow \pi(x)$
$\pi(x) \leftarrow \operatorname{argmax}_{u} \sum_{x^{\prime}} \mathcal{P}_{x x^{\prime}}^{u}\left[\mathcal{R}_{x x^{\prime}}+\alpha V\left(x^{\prime}\right)\right]$
if $b \neq \pi(x)$ then
policyIsStable \leftarrow false
end if
end for
if policyIsStable then
stop
else
go to 2
end if
Return: a policy, π, such that: $\pi(x)=\arg \max _{u} \sum_{x^{\prime}} \mathcal{P}_{x x^{\prime}}^{u}\left[\mathcal{R}_{x x^{\prime}}^{u}+\alpha V\left(x^{\prime}\right)\right]$

Value iteration

Can we get away without several

 ('infinite') \# of sweeps in the Policy
Evaluation step?

In reality: truncate PE after a finite number of steps

Idea: truncate after ONE iteration
$\rightarrow \mathrm{PE}$ and PI can be merged into a single update rule:

Value iteration

Algorithm 3 Value Iteration

Initialization: $V(x) \in \Re$ and $\pi(x) \in \mathbf{U}$ arbitrarily for all $x \in \mathbf{X}$
repeat

$$
\begin{aligned}
& \Delta \leftarrow 0 \\
& \text { for } x \in \mathbf{X} \text { do } \\
& \quad v \leftarrow V(x) \\
& \\
& V(x) \leftarrow \max _{u} \sum_{x^{\prime}} \mathcal{P}_{x x^{\prime}}^{u}\left[\mathcal{R}_{x x^{\prime}}^{u}+\alpha V\left(x^{\prime}\right)\right] \\
& \\
& \Delta \leftarrow \max (\Delta,|v-V(x)|)
\end{aligned}
$$

end for
until $\Delta<\theta$ (a small positive number)
Return: a policy, π, such that: $\pi(x)=\arg \max _{u} \sum_{x^{\prime}} \mathcal{P}_{x x^{\prime}}^{u}\left[\mathcal{R}_{x x^{\prime}}^{u}+\alpha V\left(x^{\prime}\right)\right]$

Value iteration vs. Policy evaluation

$$
\begin{aligned}
V_{k+1}(x) & =\max _{u} E\left\{r_{n}+\alpha V_{k}\left(x^{\prime}\right) \mid x_{n}=x, u_{n}=u\right\} \\
& =\max _{u} \sum_{x^{\prime}} \mathcal{P}_{x x^{\prime}}^{u}\left[\mathcal{R}_{x x^{\prime}}^{u}+\alpha V_{k}\left(x^{\prime}\right)\right]
\end{aligned}
$$

evaluate most rewarding successor state

PE

$$
V_{k+1}(x)=E_{\pi}\left\{r_{n}+\alpha V_{k}\left(x^{\prime}\right) \mid x_{n}=x\right\}
$$

$$
=\sum_{u} \pi(x, u) \sum_{x^{\prime}} \mathcal{P}_{x x^{\prime}}^{u}\left[\mathcal{R}_{x x^{\prime}}^{u}+\alpha V_{k}\left(x^{\prime}\right)\right]
$$

evaluate all successor states

$$
\pi(x) \leftarrow \underset{u}{\operatorname{argmax}} \sum_{x^{\prime}} \mathcal{P}_{x x^{\prime}}^{u}\left[\mathcal{R}_{x x^{\prime}}^{u}+\alpha V\left(x^{\prime}\right)\right]
$$

Canonical Example: Grid World

- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
- 80% of the time, the action North takes the agent North (if there is no wall there)
- 10% of the time, North takes the agent West; 10\% East
- If there is a wall in the direction the agent would have been taken, the agent stays put
- Big rewards come at the end

Value Iteration in Gridworld

noise $=0.2, \gamma=0.9$, two terminal states with $\mathrm{R}=+1$ and -1

0.8*0.9*I $+0.1 * 0.9 * 0.0$ $+0.1 * 0.9 * 0$
 $=0.72$

VALUES AFTER 1 ITERATIONS

$$
V_{k+1}(s)=\max _{a} \sum_{s^{\prime}} \mathcal{P}_{s s^{\prime}}^{a}\left[\mathcal{R}_{s s^{\prime}}^{a}+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

Value Iteration in Gridworld

noise $=0.2, \gamma=0.9$, two terminal states with $\boldsymbol{R}=+1$ and -1

0.8*0.9*। $+0.1 * 0.9 * 0.72$ $+0.1 * 0.9 * 0$
$=0.78$
VALUES AFTER 2 ITERATIONS

$$
V_{k+1}(s)=\max _{a} \sum_{s^{\prime}} \mathcal{P}_{s s^{\prime}}^{a}\left[\mathcal{R}_{s s^{\prime}}^{a}+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

inch

Value Iteration in Gridworld

noise $=0.2, \gamma=0.9$, two terminal states with $\boldsymbol{R}=+1$ and -1

VALUES AFTER 3 ITERATIONS

Value Iteration in Gridworld

noise $=0.2, \gamma=0.9$, two terminal states with $\boldsymbol{R}=+1$ and -1

VALUES AFTER 4 ITERATIONS

Value Iteration in Gridworld

noise $=0.2, \gamma=0.9$, two terminal states with $\boldsymbol{R}=+1$ and -1

VALUES AFTER 5 ITERATIONS

Value Iteration in Gridworld

noise $=0.2, \gamma=0.9$, two terminal states with $\boldsymbol{R}=+1$ and -1

0.64	0.74	0.85	1.00
-		-	
0.57		0.57	-1.00
-		-	
0.49	40.43	0.48	40.28

VALUES AFTER 100 ITERATIONS

Value Iteration in Gridworld

noise $=0.2, \gamma=0.9$, two terminal states with $\mathbf{R}=+1$ and -1

VALUES AFTER 1000 ITERATIONS

Exercise 1: Effect of discount, noise

	1	2	3	4
a				
b				
c				
d				

(a) Prefer the close exit $(+1)$, risking the cliff (-10)
(I) $\gamma=0.1$, noise $=0.5$
(b) Prefer the close exit $(+1)$, but avoiding the cliff (-10)
(2) $\gamma=0.99$, noise $=0$
(c) Prefer the distant exit $(+10)$, risking the cliff (-10)
(3) $\gamma=0.99$, noise $=0.5$
(d) Prefer the distant exit $(+10)$, avoiding the cliff (-10)
(4) $\gamma=0.1$, noise $=0$

Exercise 1 Solution

0.00	0.00	0.01	0.01	0.10
0.00		0.10	0.10	1.00
0.00		1.00		10.00
0.00	0.01	0.10	0.10	1.00
-10.00	-10.00	-10.00	-10.00	-10.00

(a) Prefer close exit $(+I)$, risking the cliff $(-I 0)---\gamma=0 . I$, noise $=0$

Exercise 1 Solution

(b) Prefer close exit (+I), avoiding the cliff $(-I 0)-\gamma=0 . I$, noise $=0.5$

Exercise 1 Solution

9.41 ,	9.51	9.61 >	9.70	9.80
9.32		9.70	9.80	9.90
9.41		1.00		10.00
9.51 ,	9.61 ,	9.70	9.80	9.90
-10.00	-10.00	-10.00	-10.00	-10.00

(c) Prefer distant exit $(+10)$ risking the cliff $(-\mid 0)--\gamma=0.99$, noise $=0$

Exercise 1 Solution

8.67	8.93	9.11 >	9.30	9.42
8.49		9.09	9.42 >	9.68
8.33		1.00		10.00
7.13	5.04	3.15	5.68	8.45
-10.00	-10.00	-10.00	-10.00	-10.00

(d) Prefer distant exit $(+10)$ avoid the cliff $(-10)--\gamma=0.99$, noise $=0.5$

Generalized Policy Iteration

Value and policy interact

policy evaluation

policy improvement

起ADRL

Generalized Policy

Iteration

Prediction problem: EstimateV

Control problem: Find controls

'co-evolution' of control and value function

GPI 'boundary cases'.

Policy iteration

I) Policy evaluation (complete!)
2) Policy improvement
need to sweep ('visit all') x in an iteration ('full backup')
3) repeat

$$
\begin{aligned}
& \pi_{0} \xrightarrow{E} V^{\pi_{0}} \xrightarrow{I} \pi_{1} \xrightarrow{E} V^{\pi_{1}} \xrightarrow{1} \pi_{2} \xrightarrow{E} \cdots \xrightarrow{I} \pi^{*} \xrightarrow{E} V^{*} \\
& \text { Value iteration }
\end{aligned}
$$

1) locally opt. Value evaluation
2) repeat

$$
V_{0} \xrightarrow{I} V_{1} \xrightarrow{I} V_{2} \xrightarrow{I} V_{3} \xrightarrow{I} \ldots \xrightarrow{I} V^{*}
$$

Generalized Policy Iteration

have seen two algorithms ('boundary cases'):
I) policy evaluation - improvement - iteration
2) value iteration

many variants to the previously seen 'basic' algorithms

[^0]
Shortest(?) path: ZH-LA 17 hops

xe-0.equinix.snjsca04.us.bb.gin.ntt.net (206.223.116.12) $\quad 183.620 \mathrm{~ms} \quad 186.715 \mathrm{~ms} \quad 191.808 \mathrm{~ms}$ ae-7.r20.snjsca94.us.bb.gin.ntt.net (129.250.5.52) $186.407 \mathrm{~ms} \quad 186.333 \mathrm{~ms} \quad 294.364 \mathrm{~ms}$ ae-4.r21.lsanca03.us.bb.gin.ntt.net (129.250.6.10) $\quad 198.648 \mathrm{~ms} \quad 402.438 \mathrm{~ms} \quad 198.831 \mathrm{~ms}$ ae-2.r05.1sanca03.us.bb.gin.ntt.net (129.250.5.86) $192.220 \mathrm{~ms} \quad 200.324 \mathrm{~ms} \quad 392.242 \mathrm{~ms}$ $165.254 .21 .242(165.254 .21 .242) \quad 208.798 \mathrm{~ms} \quad 193.602 \mathrm{~ms} 194.576 \mathrm{~ms}$ 130.152 .181 .131 (130.152.181.131) $\quad 182.530 \mathrm{~ms} \quad 188.588 \mathrm{~ms} \quad 181.767 \mathrm{~ms}$
rtr30-v255.usc.edu (128.125 .251 .148) $183.561 \mathrm{~ms} \quad 189.412 \mathrm{~ms} \quad 181.406 \mathrm{~ms}$

Reduce dependency on model

DP Methods require full sweeps (visit all states) and complete transition probabilities

They are iterative
We can use insight of DP to use similar 'tricks' to get rid of requirement for full sweeps and complete transition probabilities
'get rid of the (full) model'

Sample based RL

Monte Carlo Method

Monte-Carlo Methods

Monte-Carlo Method (Sutton definition): average (values) over random samples of actual returns

Episodic learning

$$
\begin{array}{r}
R_{t}=r_{t}+r_{t+1}+r_{t+2}+\ldots+r_{N} \\
V^{\pi}(x)=E\left\{R_{n} \mid x_{n}=x\right\}=E\left\{\sum_{k=0}^{\infty} \alpha^{k} r_{n+k} \mid x_{n}=x\right\}
\end{array}
$$

Expectation is a weighted average!
Approximate E by 'sampling'

Approximate V by sampling

- Do N rollouts
- Average return observed after first visit of each state

$$
\begin{array}{r}
\tilde{V}_{N}^{\pi}(x) \approx \frac{1}{N} \sum_{i=1}^{N} R_{n}^{i}(x, u)=\frac{1}{N} \sum_{i=1}^{N}\left(r_{n}^{i}+\alpha r_{n+1}^{i}+\alpha^{2} r_{n+2}^{i}+\ldots\right) \\
V^{\pi}(x)=E\left\{R_{n} \mid x_{n}=x\right\}=E\left\{\sum_{k=0}^{\infty} \alpha^{k} k_{n+k} \mid x_{n}=x\right\} \\
\tilde{V}_{N}^{\pi}(x) \approx \frac{1}{N} \sum_{i=1}^{N_{R}} \sum_{k=0}^{N_{T}} \alpha^{k} r_{n+k}
\end{array}
$$

'sampling approach to calculate expectation'

Tree view on DP/MC

DP - evaluate all states and/ or all choices: full backups

- MC - only evaluate states seen in an episode opportunity and problem: can 'focus' on relevant states, might not explore...

Credits

some material from:

Pieter Abbeel's Fall 2012: CS 287 Advanced Robotics @ UC Berkeley

Sutton \& Barto's book: http:// webdocs.cs.ualberta.ca/~sutton/book/thebook.html

Exercise 1: Effect of discount, noise

	1	2	3	4
a				x
b	x			
c		x		
d			x	

(a) Prefer the close exit $(+1)$, risking the cliff (-10)
(I) $\gamma=0.1$, noise $=0.5$
(b) Prefer the close exit $(+1)$, but avoiding the cliff (-10)
(2) $\gamma=0.99$, noise $=0$
(c) Prefer the distant exit $(+10)$, risking the cliff (-10)
(3) $\gamma=0.99$, noise $=0.5$
(d) Prefer the distant exit $(+10)$, avoiding the cliff (-10)
(4) $\gamma=0.1$, noise $=0$

[^0]: rraceroute to duerer.usc.eau (128.125.125.41), 64 hops max, 52 byte packets
 1 192.168.1.1 (192.168.1.1) 1.014 ms 0.992 ms 0.780 ms
 2 * * *
 217-168-57-101.static.cablecom.ch (217.168.57.101) $14.084 \mathrm{~ms} \quad 18.090 \mathrm{~ms} \quad 7.835 \mathrm{~ms}$
 $4 \quad 84.116 .211 .25(84.116 .211 .25) \quad 189.901 \mathrm{~ms} \quad 190.472 \mathrm{~ms} \quad 190.575 \mathrm{~ms}$
 $5 \quad 84.116 .202 .241(84.116 .202 .241) \quad 183.342 \mathrm{~ms} \quad 188.042 \mathrm{~ms} \quad 260.363 \mathrm{~ms}$
 $\begin{array}{lllll}6 & 84.116 .210 .217 & (84.116 .210 .217) & 183.742 \mathrm{~ms} & 182.100 \mathrm{~ms} \\ 7 & 183.804 & \mathrm{~ms}\end{array}$
 7 fr-par02a-rd1-gi-15-0-0.aorta.net (84.116.130.213) 177.586 ms
 at-vie15a-rd1-xe-4-1-0.corta.net (84.116.130.193) $184.864 \mathrm{~ms} \quad 185.053 \mathrm{~ms}$

