Optimal and Learning Control for Autonomous Robots Lecture 5

Jonas Buchli
Agile \& Dexterous Robotics Lab

EHIzürich

Help us to improve life at ETH!

\rightarrow Look for this email, with link: studierendenbefragung@ethz.ch
\rightarrow Fill out the online questionnaire.
\rightarrow This is about your happiness at ETH!
Thank you for your help.
The survey will run from 16 March to 6 April 2015. For detailed information see www.ethz.ch/studentsurvey

Erratum Script

$$
\begin{array}{ll}
\text { p14 } & \frac{d V^{*}}{d t}=V_{t}^{*}+V_{\mathbf{x}}^{* T} \mathbf{f}+\frac{1}{2} \operatorname{Tr}\left[V_{\mathbf{x}}^{*} E\left[(\mathbf{f}+\mathbf{B} \mathbf{w})(\mathbf{f}+\mathbf{B} \mathbf{w})^{T}\right] \Delta t\right] . \\
\text { p28 } & -\mathbf{x}^{T} \dot{\mathbf{S}}(t) \mathbf{x}=\min _{u \in U}\left\{\mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{u}^{T} \mathbf{R u}+2 \mathbf{u}^{T} \mathbf{P} \mathbf{x}+2 \mathbf{x}^{T} \mathbf{S}(t) \mathbf{A x}+2 \mathbf{x}^{T} \mathbf{S}(t) \mathbf{B u}\right\} . \tag{1.105}
\end{array}
$$

Class logistics

Exercise groups

Sign up for the exercises in groups of 2:
https://ethz.doodle.com/c27fqrggtqth 2×57
Please avoid single-member groups!
Deadline for inscription: March 20th, I8h

Exercises

Exercises

-3 programming exercises

- starting L5, 8, I2
- exercises graded pass/fail
- grade boost for passed exercises
-ExI: 0.I, Ex 2: 0.05, Ex 3: 0.I
-solutions will be available at end of semester -topics of exercises will be used for exam

Exercise

$$
\text { Today - } 16: 15
$$

- Submission:
- Code must be submitted through website form
- NO EMAIL SUBMISSION!
- submit by Wed, I5.4.20I5
- USE OFFICE HOURS FOR QUESTIONS!
- Interviews:

Office hours:
Thu, 17:30-I8:30
Room: ML J37.I

- Interviews on Friday, I7.4.2015, all day
- 10 min session/group
- explain submitted code and answers
- pass/fail grade given
- Doodle link for sign up for interview will be given

A D R L

Lecture 5 Goals

\star Derivation of ILQC (Part II) \star LQR

L4 Recap

Solve optimal control

$$
\underset{V^{*}(n, x)=\min _{w_{n}^{n}}^{n}\left(L_{n}\left(x, u_{n}\right)+a V^{v}\left(n+1, f_{n}\left(x, u_{n}\right)\right)\right]}{ }
$$

I. Principle of optimality: Bellman / HJB Equation
2. Make some assumptions
3. Minimize RHS of Equation
4. ... yields conditions for optimal control
5. substitute back to solve for remaining quantities

Sequential Quadratic Programming (SQP)

'Unsolvable Nonlinear Program':

$$
\begin{array}{ll}
\min _{x} f(x) & x \in \mathbb{R}^{n} \\
\text { s.t. } & f_{j}(x) \leq 0, \\
& h_{j}(x)=0,
\end{array} \quad j=1, \ldots, N
$$

Idea:Approximate nonlinear program by a QP, solve iteratively
$\boldsymbol{E T H}_{\text {zürch }}$

Sequential Quadratic Programming (SQP)

Idea:Approximate nonlinear program by a QP, solve iteratively

- Initial guess \tilde{x}_{0}
- Approximate $f(x)$ at \tilde{x}_{0} by 2 nd order Taylor series expansion

$$
f(x) \approx f\left(\tilde{x}_{0}\right)+\left(x-\tilde{x}_{0}\right)^{T} \nabla f\left(\tilde{x}_{0}\right)+\frac{1}{2}\left(x-\tilde{x}_{0}\right)^{T} \nabla^{2} f\left(\tilde{x}_{0}\right)\left(x-\tilde{x}_{0}\right) \quad \text { square in } \mathbf{X}
$$

$$
f_{j}(x) \approx f_{j}\left(\tilde{x}_{0}\right)+\left(x-\tilde{x}_{0}\right)^{T} \nabla f_{j}\left(\tilde{x}_{0}\right)
$$

constraints: first order

$$
h_{j}(x) \approx h_{j}\left(\tilde{x}_{0}\right)+\left(x-\tilde{x}_{0}\right)^{T} \nabla h_{j}\left(\tilde{x}_{0}\right)
$$

- yields new approximative solution \tilde{x}_{1}
-repeat
$\lim _{\underset{\text { ufprobem convex }}{\rightarrow \infty}} \tilde{x}_{i}=x^{*}$

Sequential Linear Quadratic Control - SLQ

$$
\begin{array}{rrr}
\min _{\mu} & {\left[\Phi(\mathbf{x}(N))+\sum_{n=0}^{N-1} L_{n}(\mathbf{x}(n), \mathbf{u}(n))\right]} & \\
\text { s.t. } & \mathbf{x}(n+1)=\mathbf{f}(\mathbf{x}(n), \mathbf{u}(n)) & \mathbf{x}(0)=\mathbf{x}_{0} \\
& \mathbf{u}(n, \mathbf{x})=\mu(n, \mathbf{x}) &
\end{array}
$$

Idea: Fit simplified subproblem to original problem, solve iteratively

Class of algorithms

value function \rightarrow optimization target \rightarrow quadratic

$$
\text { system dynamics } \rightarrow \text { constraints } \rightarrow \text { linear }
$$

$\bigcirc \longrightarrow$

I. Initial guess for parameter
2. Solve sub problem: Approximate original problem with a linearquadratic problem
3. yields new approximative solution
4. repeat
I. Initial guess for policy
2. Solve sub problem: Approximate value function with a linearquadratic
3. yields new
approximative policy
4. repeat

SLQ subproblem in a nutshell

2.l Forward pass: integrate to get a state (and controls) trajectory
2.2 Backward pass

Solve simplified optimal control problem around state and control trajectory
3.Adjust guess for optimal control choice of: approximation, solver \Rightarrow different SLQ algorithms (examples: DDP, iLQG, ILQC)

Linearize system dynamics
 Quadratize cost

Compute value function
Compute optimal control
Solve for Riccati like equation Solve Riccati like equation

Linearization of system dynamics

$$
\begin{aligned}
& \overline{\mathbf{x}}_{n+1}+\delta \mathbf{x}_{n+1} \boldsymbol{f}_{n}\left(\overline{\mathbf{x}}_{n}+\delta \mathbf{x}_{n}, \overline{\mathbf{u}}_{n}+\delta \mathbf{u}_{n}\right) \\
& \overline{\mathbf{x}}_{n+1}=\mathbf{f}_{n}\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right) \\
& \begin{aligned}
\delta \mathbf{x}_{n+1} & \approx \begin{array}{l}
\mathbf{A}_{n} \delta \mathbf{x}_{n}+\mathbf{B} \\
\mathbf{A}_{n}
\end{array}=\frac{\partial \mathbf{f}\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{x}}
\end{aligned} \\
& \mathbf{B}_{n}=\frac{\partial \mathbf{f}\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{u}}
\end{aligned}
$$

\mathbf{A}_{n} and \mathbf{B}_{n} are independent of $\delta \mathbf{x}_{n}$ and $\delta \mathbf{u}_{n}$
\mathbf{A}_{n} and \mathbf{B}_{n} are time varying
nonlinear \rightarrow linear, time variant

Quadratization of cost function

$$
\begin{aligned}
& J=\Phi\left(\mathbf{x}_{N}\right)+\sum_{n=0}^{N-1} L_{n}\left(\mathbf{x}_{n}, \mathbf{u}_{n}\right) \\
& \text { Control costs } \\
& J \approx q_{N}+\delta \mathbf{x}_{N}^{T} \mathbf{q}_{N}+\frac{1}{2} \delta \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \delta \mathbf{x}_{N} \\
& +\sum_{n=0}^{N-1}\left\{q_{n}+\delta \mathbf{x}_{n}^{T} \mathbf{q}_{n}+\delta \mathbf{u}_{n}^{T} \mathbf{r}_{n}+\frac{1}{2} \delta \mathbf{x}_{n}^{T} \mathbf{Q}_{n} \delta \mathbf{x}_{n}+\frac{1}{2} \delta \mathbf{u}_{n}^{T} \mathbf{R}_{n} \delta \mathbf{u}_{n}+\delta \mathbf{u}_{n}^{T} \mathbf{P}_{n} \delta \mathbf{x}_{n}\right\} \\
& \forall n \in\{0, \cdots, N-1\}: \\
& \begin{array}{lll}
q_{n}=L_{n}\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right), & \mathbf{q}_{n}=\frac{\partial L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{x}}, & \mathbf{Q}_{n}=\frac{\partial^{2} L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{x}^{2}} \\
\mathbf{P}_{n}=\frac{\partial^{2} L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{u} \partial \mathbf{x}}, & \mathbf{r}_{n}=\frac{\partial L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{u}}, & \mathbf{R}_{n}=\frac{\partial^{2} L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{u}^{2}}
\end{array} \\
& n=N \text { : } \\
& q_{N}=\Phi\left(\overline{\mathbf{x}}_{n}\right), \quad \quad \mathbf{q}_{N}=\frac{\partial \Phi\left(\overline{\mathbf{x}}_{n}\right)}{\partial \mathbf{x}}, \quad \mathbf{Q}_{N}=\frac{\partial^{2} \Phi\left(\overline{\mathbf{x}}_{n}\right)}{\partial \mathbf{x}^{2}}
\end{aligned}
$$

Note that all derivatives w.r.t. \mathbf{u} are zero for the terminal time-step N
$\mathrm{Q}, \mathrm{R}, \mathrm{P}$ are given through definition of cost!

Compute Value function (2) Quadratic Ansatz for Value function

Ansatz: Quadratic Value function

$$
V^{*}\left(n+1, \delta \mathbf{x}_{n+1}\right)=s_{n+1}+\delta \mathbf{x}_{n+1}^{T} \mathbf{s}_{n+1}+\frac{1}{2} \delta \mathbf{x}_{n+1}^{T} \mathbf{S}_{n+1} \delta \mathbf{x}_{n+1}
$$

$\mathbf{S}_{n}, \mathbf{s}_{n}, s_{n}$ are unknown
and will have to be computed... later!
relabel terms depending on controls

$$
\begin{aligned}
\mathbf{g}_{n} \triangleq \mathbf{r}_{n}+\mathbf{B}_{n}^{T} \mathbf{s}_{n+1} \\
\mathbf{G}_{n} \triangleq \mathbf{P}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n} \\
\mathbf{H}_{n} \triangleq \mathbf{R}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}
\end{aligned}
$$

$$
\begin{align*}
V^{*}\left(n, \delta \mathbf{x}_{n}\right)=\min _{\mathbf{u}_{n}} & {\left[q_{n}+s_{n+1}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}\right)\right.} \tag{1.80}\\
& \left.+\frac{1}{2} \delta \mathbf{x}_{n}^{T}\left(\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right) \delta \mathbf{x}_{n}+\delta \mathbf{u}_{n}^{T}\left(\mathbf{g}_{n}+\mathbf{G}_{n} \delta \mathbf{x}_{n}\right)+\frac{1}{2} \delta \mathbf{u}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{n}\right]
\end{align*}
$$

Optimal control: FF/FB

$$
\delta \mathbf{u}_{n}=-\mathbf{H}_{n}^{-1} \mathbf{g}_{n}-\mathbf{H}_{n}^{-1} \mathbf{G}_{n} \delta \mathbf{x}_{n}
$$

feed-forward term $\delta \mathbf{u}_{n}^{f f}=-\mathbf{H}_{n}^{-1} \mathbf{g}_{n}$
feedback term $\mathbf{K}_{n} \delta \mathbf{x}_{n} \quad$ feedback gain matrix $\mathbf{K}_{n}:=-\mathbf{H}_{n}^{-1} \mathbf{G}_{n}$

$$
\delta u_{n}=\delta u_{n}^{f f}+\mathbf{I}_{n} \delta \mathbf{x}_{n}
$$

check 'units'

$$
\begin{gathered}
\delta \mathbf{u}_{n}=-\mathbf{H}_{n}^{-1} \mathbf{g}_{n}-\mathbf{H}_{n}^{-1} \mathbf{G}_{n} \delta \mathbf{x}_{n} \\
\mathbf{H}_{n}^{-1} \mathbf{g}_{n} \\
(\mathbf{R} \ldots)^{-1} \\
(\mathbf{r} \ldots) \\
\frac{\mathbf{H}_{n}^{-1} \mathbf{G}_{n} \delta \mathbf{x}_{n}}{\partial^{2} L} \quad \frac{(\mathbf{R} \ldots)^{-1}}{\partial \mathbf{u}} \\
\partial \mathbf{u} \\
\hline
\end{gathered}
$$

ETHzürich

check＇units＇

$$
\begin{aligned}
& \delta \mathbf{u}_{n}=-\mathbf{H}_{n}^{-1} \mathbf{g}_{n}-\mathbf{H}_{n}^{-1} \mathbf{G}_{n} \delta \mathbf{x}_{n} \\
& \mathbf{H}_{n}^{-1} \mathbf{g}_{n} \\
& (\mathbf{R} \ldots)^{-1} \\
& \text { (r...) } \\
& (\mathbf{R} \ldots)^{-1} \\
& (\mathbf{P} \ldots) \quad \delta \mathbf{x}_{n} \\
& \text { 获 } \\
& \partial u \\
& \mathbf{H}_{n}^{-1} \mathbf{G}_{n} \delta \mathbf{x}_{n} \\
& \frac{\partial \mathbf{u}^{\boldsymbol{X}}}{\partial \mathbf{Z}} \\
& \underset{\text { 森 }}{ } \text { * } \\
& \partial \mathbf{u}
\end{aligned}
$$

$$
\delta \mathbf{u}_{n}=-\mathbf{H}_{n}^{-1} \mathbf{g}_{n}-\mathbf{H}_{n}^{-1} \mathbf{G}_{n} \delta \mathbf{x}_{n}
$$

feed-forward term $\delta \mathbf{u}_{n}^{f f}=-\mathbf{H}_{n}^{-1} \mathbf{g}_{n}$
feedback gain matrix $\mathbf{K}_{n}:=-\mathbf{H}_{n}^{-1} \mathbf{G}_{n}$
functions of unknown $\mathbf{S}_{n}, \mathbf{s}_{n}, s_{n}$

$$
\begin{aligned}
\mathbf{g}_{n} \triangleq \mathbf{r}_{n}+\mathbf{B}_{n}^{T} \mathbf{s}_{n+1} \\
\mathbf{G}_{n} \triangleq \mathbf{P}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n} \\
\mathbf{H}_{n} \triangleq \mathbf{R}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}
\end{aligned}
$$

Solving for $\mathbf{S}_{n}, \mathbf{s}_{n}, s_{n}$

EOF Recap

L5

Solving for $\mathbf{S}_{n}, \mathbf{s}_{n}, s_{n}$

$\delta \mathbf{u}_{n}=-\mathbf{H}_{n}^{-1} \mathbf{g}_{n}-\mathbf{H}_{n}^{-1} \mathbf{G}_{n} \delta \mathbf{x}_{n}$
feed-forward term $\delta \mathbf{u}_{n}^{f f}=-\mathbf{H}_{n}^{-1} \mathbf{g}_{n}$
feedback term $\mathbf{K}_{n} \delta \mathbf{x}_{n} \quad$ feedback gain matrix $\mathbf{K}_{n}:=-\mathbf{H}_{n}^{-1} \mathbf{G}_{n}$
replace $\quad \delta \mathbf{u}_{n}=\delta \mathbf{u}_{n}^{f f}+\mathbf{K}_{n} \delta \mathbf{x}_{n}$
plug into

$$
\begin{aligned}
V^{*}\left(n, \delta \mathbf{x}_{n}\right)=\min _{\mathbf{u}_{n}}[& q_{n}+s_{n+1}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}\right) \\
& \left.+\frac{1}{2} \delta \mathbf{x}_{n}^{T}\left(\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right) \delta \mathbf{x}_{n}+\delta \mathbf{u}_{n}^{T}\left(\mathbf{g}_{n}+\mathbf{G}_{n} \delta \mathbf{x}_{n}\right)+\frac{1}{2} \delta \mathbf{u}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{n}\right]
\end{aligned}
$$

$$
\begin{array}{rlrl}
V^{*}\left(n, \delta \mathbf{x}_{n}\right)=\min _{\mathbf{u}_{n}}[& q_{n}+s_{n+1}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}\right) & \delta \mathbf{u}_{n}=\delta \mathbf{u}_{n}^{f f}+\mathbf{K}_{n} \delta \mathbf{x}_{n} \\
& +\frac{1}{2} \delta \mathbf{x}_{n}^{T}\left(\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right) \delta \mathbf{x}_{n}+\delta \mathbf{u}_{n}^{T}\left(\mathbf{g}_{n}+\mathbf{G}_{n} \delta \mathbf{x}_{n}\right)+\frac{1}{2} \delta \mathbf{u}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{n}
\end{array}
$$

$$
\begin{aligned}
& \left(\delta \mathbf{u}_{n}^{f f}+\mathbf{K}_{n} \delta \mathbf{x}_{n}\right)^{T}\left(\mathbf{g}_{n}+\mathbf{G}_{n} \delta \mathbf{x}_{n}\right) \\
& \quad+\frac{1}{2}\left(\delta \mathbf{u}_{n}^{f f}+\mathbf{K}_{n} \delta \mathbf{x}_{n}\right)^{T} \mathbf{H}_{n}\left(\delta \mathbf{u}_{n}^{f f}+\mathbf{K}_{n} \delta \mathbf{x}_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \delta \mathbf{u}_{n}^{f f^{T}} \mathbf{g}_{n}+\delta \mathbf{u}_{n}^{f f^{T}} \mathbf{G}_{n} \delta \mathbf{x}_{n}+\delta \mathbf{x}_{n}^{T} \mathbf{K}_{n}^{T} \mathbf{g}_{n}+\delta \mathbf{x}_{n}^{T} \mathbf{K}_{n}^{T} \mathbf{G}_{n} \delta \mathbf{x}_{n} \\
+ & \frac{1}{2}\left(\delta \mathbf{u}_{n}^{f f T} \mathbf{H}_{n} \delta \mathbf{u}_{n}^{f f}+\delta \mathbf{u}_{n}^{f f T} \mathbf{H}_{n} \mathbf{K}_{n} \delta \mathbf{x}_{n}+\delta \mathbf{x}_{n}^{T} \mathbf{K}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{n}^{f f}+\delta \mathbf{x}_{n}^{T} \mathbf{K}_{n}^{T} \mathbf{H}_{n} \mathbf{K}_{n} \delta \mathbf{x}_{n}\right) \\
& \delta \mathbf{u}^{f f^{T}} \mathbf{g}+\frac{1}{2} \delta \mathbf{u}^{f f^{T}} \mathbf{H} \delta \mathbf{u}^{f f}+\delta \mathbf{x}^{T}\left(\mathbf{G}^{T} \delta \mathbf{u}^{f f}+\mathbf{K}^{T} \mathbf{g}+\mathbf{K}^{T} \mathbf{H} \delta \mathbf{u}^{f f}\right) \\
& +\frac{1}{2} \delta \mathbf{x}^{T}\left(\mathbf{K}^{T} \mathbf{H K}+\mathbf{K}^{T} \mathbf{G}+\mathbf{G}^{T} \mathbf{K}\right) \delta \mathbf{x}
\end{aligned}
$$

$$
\begin{aligned}
& V^{*}\left(n, \delta \mathbf{x}_{n}\right)=\min _{\mathbf{u}_{n}}\left[q_{n}+s_{n+1}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}\right)\right. \\
& \left.+\frac{1}{2} \delta \mathbf{x}_{n}^{T}\left(\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right) \delta \mathbf{x}_{n}+\delta \mathbf{u}_{n}^{T}\left(\mathbf{g}_{n}+\mathbf{G}_{n} \delta \mathbf{x}_{n}\right)+\frac{1}{2} \delta \mathbf{u}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{n}\right] \\
& V^{*}\left(n, \delta \mathbf{x}_{n}\right)=s_{n}+\delta \mathbf{x}_{n}^{T} \mathbf{s}_{n}+\frac{1}{2} \delta \mathbf{x}_{n}^{T} \mathbf{S}_{n} \delta \mathbf{x}_{n} \\
& \text { Quadratic Ansate } \\
& \delta \mathbf{u}^{f f^{T}} \mathbf{g}+\frac{1}{2} \delta \mathbf{u}^{f f^{T}} \mathbf{H} \delta \mathbf{u}^{f f}+\delta \mathbf{x}^{T}\left(\mathbf{G}^{T} \delta \mathbf{u}^{f f}+\mathbf{K}^{T} \mathbf{g}+\mathbf{K}^{T} \mathbf{H} \delta \mathbf{u}^{f f}\right) \\
& +\frac{1}{2} \delta \mathbf{x}^{T}\left(\mathbf{K}^{T} \mathbf{H K}+\mathbf{K}^{T} \mathbf{G}+\mathbf{G}^{T} \mathbf{K}\right) \delta \mathbf{x}
\end{aligned}
$$

$$
\begin{aligned}
& s_{n}+\delta \mathbf{x}_{n}^{T} \mathbf{s}_{n}+\frac{1}{2} \delta \mathbf{x}_{n}^{T} \mathbf{S}_{n} \delta \mathbf{x}_{n}= \\
& q_{n}+s_{n+1}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}\right)+\frac{1}{2} \delta \mathbf{x}_{n}^{T}\left(\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right) \delta \mathbf{x}_{n}+ \\
& \delta \mathbf{u}_{\mathbf{n}} \mathbf{f f}^{T} \mathbf{g}_{n}+\frac{1}{2} \delta \mathbf{u}_{\mathbf{n}} \mathbf{f r}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{\mathbf{n}}^{\mathrm{ff}}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{G}_{n}^{T} \delta \mathbf{u}_{\mathbf{n}}^{\mathrm{ff}}+\mathbf{K}_{n}^{T} \mathbf{g}_{n}+\mathbf{K}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{\mathbf{n}}^{\mathrm{ff}}\right) \\
& \quad+\frac{1}{2} \delta \mathbf{x}_{n}^{T}\left(\mathbf{K}_{n}^{T} \mathbf{H}_{n} \mathbf{K}_{n}+\mathbf{K}_{n}^{T} \mathbf{G}_{n}+\mathbf{G}_{n}^{T} \mathbf{K}_{n}\right) \delta \mathbf{x}_{n}
\end{aligned}
$$

$$
\begin{aligned}
& s_{n}+\delta \mathbf{x}_{n}^{T} \mathbf{s}_{n}+\frac{1}{2} \delta \mathbf{x}_{n}^{T} \mathbf{S}_{n} \delta \mathbf{x}_{n}= \\
& q_{n}+s_{n+1}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}\right)+\frac{1}{2} \delta \mathbf{x}_{n}^{T}\left(\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right) \delta \mathbf{x}_{n}+ \\
& \delta \mathbf{u}_{\mathbf{n}}^{\mathbf{f} T} \mathbf{g}_{n}+\frac{1}{2} \delta \mathbf{u}_{\mathbf{n}} \mathbf{f r}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{\mathbf{n}}^{\mathrm{ff}}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{G}_{n}^{T} \delta \mathbf{u}_{\mathbf{n}}^{\mathrm{ff}}+\mathbf{K}_{n}^{T} \mathbf{g}_{n}+\mathbf{K}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{\mathbf{n}}^{\mathrm{ff}}\right) \\
&+\frac{1}{2} \delta \mathbf{x}_{n}^{T}\left(\mathbf{K}_{n}^{T} \mathbf{H}_{n} \mathbf{K}_{n}+\mathbf{K}_{n}^{T} \mathbf{G}_{n}+\mathbf{G}_{n}^{T} \mathbf{K}_{n}\right) \delta \mathbf{x}_{n}
\end{aligned}
$$

$$
n \in\{0, \cdots, N-1\}
$$

$$
\mathbf{S}_{n}=\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}+\mathbf{K}_{n}^{T} \mathbf{H}_{n} \mathbf{K}_{n}+\mathbf{K}_{n}^{T} \mathbf{G}_{n}+\mathbf{G}_{n}^{T} \mathbf{K}_{n}
$$

$$
\mathbf{s}_{n}=\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}+\mathbf{K}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{n}^{f f}+\mathbf{K}_{n}^{T} \mathbf{g}_{n}+\mathbf{G}_{n}^{T} \delta \mathbf{u}_{n}^{f f}
$$

$$
s_{n}=q_{n}+s_{n+1}+\frac{1}{2} \delta \mathbf{u}_{\mathbf{n}}^{\mathbf{f f}^{T}} \mathbf{H}_{n} \delta \mathbf{u}_{n}^{f f}+\delta \mathbf{u}_{n}^{f f^{T}} \mathbf{g}_{n}
$$

$$
\mathbf{S}_{N}=\mathbf{Q}_{N}, \quad \mathbf{s}_{N}=\mathbf{q}_{N}, \quad s_{N}=q_{N}
$$

note symmetry of S (if Q symmetric)!

S positive definite

$$
n \in\{0, \cdots, N-1\}
$$

$$
\begin{aligned}
& \mathbf{S}_{n}=\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}+\mathbf{K}_{n}^{T} \mathbf{H}_{n} \mathbf{K}_{n}+\mathbf{K}_{n}^{T} \mathbf{G}_{n}+\mathbf{G}_{n}^{T} \mathbf{K}_{n} \\
& \mathbf{s}_{n}=\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}+\mathbf{K}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{n}^{f f}+\mathbf{K}_{n}^{T} \mathbf{g}_{n}+\mathbf{G}_{n}^{T} \delta \mathbf{u}_{n}^{f f} \\
& s_{n}=q_{n}+s_{n+1}+\frac{1}{2} \delta \mathbf{u}_{\mathbf{n}}{ }^{T} \mathbf{H}_{n} \delta \mathbf{u}_{n}^{f f}+\delta \mathbf{u}_{n}^{f f T} \mathbf{g}_{n} \\
& \mathbf{S}_{N}=\mathbf{Q}_{N}, \quad \mathbf{s}_{N}=\mathbf{q}_{N}, \quad s_{N}=q_{N} \\
& \begin{array}{l}
\mathbf{g}_{n} \triangleq \mathbf{r}_{n}+\mathbf{B}_{n}^{T} \mathbf{s}_{n+1} \\
\mathbf{G}_{n} \triangleq \mathbf{P}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n} \\
\mathbf{H}_{n} \triangleq \mathbf{R}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}
\end{array}
\end{aligned}
$$

* $\mathrm{S}(\mathrm{n})$ are only a function of known quantities: system matrix, control gain matrix, cost terms ^ ...AND future S (backwards)
\star Principle of optimality: solve backwards in time

Optimal control

$\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)$
$\delta \mathbf{u}_{n}=-\mathbf{H}_{n}^{-1} \mathbf{g}_{n}-\mathbf{H}_{n}^{-1} \mathbf{G}_{n} \delta \mathbf{x}_{n} \quad \delta \mathbf{x}_{n} \triangleq \mathbf{x}_{n}-\overline{\mathbf{x}}_{n}$
We have derived the 'incremental'

$$
\delta \mathbf{u}_{n} \triangleq \mathbf{u}_{n}-\overline{\mathbf{u}}_{n}
$$ policy, thus total control is

$$
\mathbf{u}(n, x)=\overline{\mathbf{u}}_{n}+\delta \mathbf{u}_{n}^{f f}+\mathbf{K}_{n}\left(\mathbf{x}_{n}-\overline{\mathbf{x}}_{n}\right)
$$

Optimal control f(n+I)

feed-forward term $\delta \mathbf{u}_{n}^{f f}=-\mathbf{H}_{n}^{-1} \mathbf{g}_{n}$
feedback gain matrix $\mathbf{K}_{n}:=-\mathbf{H}_{n}^{-1} \mathbf{G}_{n}$
using definition can also write these equations as

$$
\begin{aligned}
& \delta \mathbf{u}^{\mathrm{ff}}=\left(\mathbf{R}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}\right)^{-1}\left(\mathbf{r}_{n}+\mathbf{B}_{n}^{T} \mathbf{s}_{n+1}\right) \\
& \mathbf{K}_{n}=\left(\mathbf{R}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}\right)^{-1}\left(\mathbf{P}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right)
\end{aligned}
$$

ILQGC main iteration

0 . Initialization: we assume that an initial, feasible policy $\boldsymbol{\mu}$ and initial state \mathbf{x}_{0} is given. Then, for every iteration (i) :
nonlinear system

Forward pass

1. Roll-Out: perform a forward-integration of the system dynamics (1.70) subject to initial condition \mathbf{x}_{0} and the current policy $\boldsymbol{\mu}$. Thus, obtain the nominal state- and control input trajectories $\overline{\mathbf{u}}_{n}^{(i)}, \overline{\mathbf{x}}_{n}^{(i)}$ for $n=0,1, \ldots, N$.

$$
\overline{\mathbf{x}}_{n+1}=\mathbf{f}_{n}\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)
$$

$$
\delta \mathbf{x}_{n+1} \approx \mathbf{A}_{n} \delta \mathbf{x}_{n}+\mathbf{B}_{n} \delta \mathbf{u}_{n}
$$

2. Linear-Quadratic Approximation: build a local, linear-quadratic approximation around every state-input pair $\left(\overline{\mathbf{u}}_{n}^{(i)}, \overline{\mathbf{x}}_{n}^{(i)}\right)$ as described in Equations (1.75) to (1.78). Backwards pass

$$
\begin{aligned}
& \mathbf{A}_{n}=\frac{\partial \mathbf{f}\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{x}} \\
& \mathbf{B}_{n}=\frac{\partial \mathbf{f}\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{u}}
\end{aligned}
$$

3. Compute the Control Law: solve equations (1.84) to (1.86) backward in time and design the affine control policy through equation (1.88).
4. Go back to 1 . and reperat until the sequences $\overline{\mathbf{u}}^{(i+1)}$ and $\overline{\mathbf{u}}^{(i)}$ are sufficiently close.
$\mathbf{S}_{n}=\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}+\mathbf{K}_{n}^{T} \mathbf{H}_{n} \mathbf{K}_{n}+\mathbf{K}_{n}^{T} \mathbf{G}_{n}+\mathbf{G}_{n}^{T} \mathbf{K}_{n}$
$\mathbf{s}_{n}=\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}+\mathbf{K}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{n}^{f f}+\mathbf{K}_{n}^{T} \mathbf{g}_{n}+\mathbf{G}_{n}^{T} \delta \mathbf{u}_{n}^{f f}$
$\begin{aligned} & J \approx q_{N}+\delta \mathbf{x}_{N}^{T} \mathbf{q}_{N}+\frac{1}{2} \delta \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \delta \mathbf{x}_{N} \\ &+\sum_{n=0}^{N-1}\left\{q_{n}+\delta \mathbf{x}_{n}^{T} \mathbf{q}_{n}+\delta \mathbf{u}_{n}^{T} \mathbf{r}_{n}+\frac{1}{2} \delta \mathbf{x}_{n}^{T} \mathbf{Q}_{n} \delta \mathbf{x}_{n}+\frac{1}{2} \delta \mathbf{u}_{n}^{T} \mathbf{R}_{n} \delta \mathbf{u}_{n}+\delta \mathbf{u}_{n}^{T} \mathbf{P}_{n} \delta \mathbf{x}_{n}\right\}\end{aligned}$
$s_{n}=q_{n}+s_{n+1}+\frac{1}{2} \delta \mathbf{u}_{\mathbf{n}}{ }^{T T} \mathbf{H}_{n} \delta \mathbf{u}_{n}^{f f}+\delta \mathbf{u}_{n}^{f f^{T}} \mathbf{g}_{n}$

Buchli - OLCAR - 20I5

$$
\begin{array}{ll}
\forall n \in\{0, \cdots, N-1\}: & \\
q_{n}=L_{n}\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right), & \mathbf{q}_{n}=\frac{\partial L\left(\overline{\mathbf{x}}_{n}, \bar{u}_{n}\right)}{\partial \mathbf{x}}, \\
\mathbf{P}_{n}=\frac{\partial^{2} L\left(\overline{\mathbf{x}}_{n}, \bar{u}_{n}\right)}{\partial \mathbf{u} \partial \mathbf{x}}, & \mathbf{r}_{n}=\frac{\partial L\left(\overline{\mathbf{x}}_{n}, \bar{u}_{n}\right)}{\partial \mathbf{u}},
\end{array}
$$

SLQC Recap...

I. Initial guess for policy
2. Solve sub problem: Approximate value function with a linearquadratic
3. yields new approximative policy
4. repeat
2.I Forward pass: integrate to get a state (and controls) trajectory
2.2 Backward pass

Solve simplified optimal control problem around state and control trajectory
3.Adjust guess for optimal control

Linearize system dynamics
 Quadratize cost

Compute value function
Compute optimal control
Solve for Riccati like equation Solve Riccati like equation

Taylor series are polynomials $\quad \sum_{i=0}^{\infty} \frac{f^{(i)}\left(x_{0}\right)}{i!}\left(x-x_{0}\right)^{i}$ polynomials can (locally) approximate arbitrary function

$$
f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}
$$

$x^{0} \quad x^{1} \quad x^{2} \quad x^{3} \quad x^{4} \quad x^{5}$

$i=0$

$i=1$
symmetric
$i=2$

asymmetric
$i=3$

$i=2$

no need for linear term in approximation at minimum

'Shapeology' of cost function

- Cost can have arbitrary constant offset
- at minimum:
- Minimum is locally flat (slope 0) $\frac{\partial C}{\partial x}=0$
- Cost increases everywhere away from min. $\frac{\partial^{2} C}{\partial x^{2}}<0$
- Symmetric
- not at minimum:
- Not locally flat (slope not 0)

$$
\frac{\partial C}{\partial x} \neq 0
$$

- Cost increases towards 'one side’
- asymmetric

$$
\left|\frac{\partial^{2} C}{\partial x^{2}}\right| \ll\left|\frac{\partial C}{\partial x}\right|
$$

LQR - Linear Quadratic

 Regulator
Linearized System Dynamics

Quadratic cost function
Regulates output to zero

Discrete Time LQR

Linear Regulator

Linear (or linearized) system dynamics:

$$
\mathbf{x}_{n+1}=\mathbf{A}_{n} \mathbf{x}_{n}+\mathbf{B}_{n} \mathbf{u}_{n}
$$

Regulator: keep states at 0

$$
\begin{aligned}
& \delta \mathbf{x}_{n}=\mathbf{x}_{n} \\
& \delta \mathbf{u}_{n}=\mathbf{u}_{n}
\end{aligned}
$$

Optimal Regulator

Linear

* Control:
pure state feedback (no forward)
linear control enough to stabilize locally
\star Cost:
Quadratic
regulator: optimum at $\mathrm{x}, \mathrm{u}=0$ increasing for any non-zero x, u
\Rightarrow purely quadratic cost

Quadratization of cost function

$$
\begin{aligned}
& J=\Phi\left(\mathbf{x}_{N}\right)+\sum_{n=0}^{N-1} L_{n}\left(\mathbf{x}_{n}, \mathbf{u}_{n}\right) \\
& \text { Control costs } \\
& J \approx+\delta \mathbf{x}_{N}^{T} \mathbf{q}_{N}+\frac{1}{2} \delta \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \delta \mathbf{x}_{N} \\
& +\sum_{n=0}^{N-1}{ }^{n}+\delta \mathbf{x}^{T} \mathbf{4} n+\delta \mathbf{r}_{n} \mathbf{r}_{n}+\frac{1}{2} \delta \mathbf{x}_{n}^{T} \mathbf{Q}_{n} \delta \mathbf{x}_{n}+\frac{1}{2} \delta \mathbf{u}_{n}^{T} \mathbf{R}_{n} \delta \mathbf{u}_{n}+\delta \mathbf{u}_{n}^{T} \\
& \forall n \in\{0, \cdots, N-1\}: \\
& \left.q_{n}=L_{n}, \overline{\mathbf{u}}_{n}\right) \\
& \mathbf{q}_{n}=\frac{\partial L\left(\overline{\mathbf{x}} \hat{\alpha}_{n}\right)}{\delta \mathbf{x}}, \\
& \mathbf{Q}_{n}=\frac{\partial^{2} L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{x}^{2}} \\
& \text { 'Mixing terms' } \\
& \mathbf{P}_{n}=\frac{\partial^{2} L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{u} \partial \mathbf{x}}, \\
& \mathbf{r}_{n}=\frac{\partial L\left(\overline{\mathbf{x}}, \overline{\mathrm{a}}_{n}\right)}{\partial \mathbf{u}}, \\
& \mathbf{R}_{n}=\frac{\partial^{2} L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{u}^{2}} \\
& n=N \text { : } \\
& \left.q_{N}=\hat{\mathbf{x}}_{n}\right), \quad \mathbf{q}_{N}=\frac{\partial \Phi(\overline{\mathbf{x}}}{}, \quad \mathbf{Q}_{N}=\frac{\partial^{2} \Phi\left(\overline{\mathbf{x}}_{n}\right)}{\partial \mathbf{x}^{2}}
\end{aligned}
$$

Note that all derivatives w.r.t. \mathbf{u} are zero for the terminal time-step N
$\mathrm{Q}, \mathrm{R}, \mathrm{P}$ are given through definition of cost!

Purely Quadratic cost

$$
J=\frac{1}{2} \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \mathbf{x}_{N}+\sum_{n=0}^{N-1} \frac{1}{2} \mathbf{x}_{n}^{T} \mathbf{Q}_{n} \mathbf{x}_{n}+\frac{1}{2} \mathbf{u}_{n}^{T} \mathbf{R}_{n} \mathbf{u}_{n}+\mathbf{u}_{n}^{T} \mathbf{P}_{n} \mathbf{x}_{n}
$$

at optimum no linear term (locally symmetric)

cf with polynomial

$$
q_{n}=L_{n}\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)=0 \quad \mathbf{q}_{n}=\frac{\partial L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{x}}=\mathbf{0} \quad \mathbf{r}_{n}=\frac{\partial L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{u}}=\mathbf{0}
$$

$$
q_{n}=L_{n}\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)=0 \quad \mathbf{q}_{n}=\frac{\partial L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{x}}=\mathbf{0} \quad \mathbf{r}_{n}=\frac{\partial L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{u}}=\mathbf{0}
$$

$$
\mathbf{S}_{N}=\mathbf{Q}_{N}, \quad \mathbf{s}_{N}=0, \quad s_{N}=0
$$

$$
\delta \mathbf{u}_{n}^{f f}=-\mathrm{HO} \mathrm{~g}_{n}
$$

$$
\begin{aligned}
& \mathbf{g}_{n} \triangleq \mathrm{r}_{n}+\mathbf{0} \mathbf{s}_{n+1} \\
& \mathbf{G}_{n} \triangleq \mathbf{P}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n} \\
& \mathbf{H}_{n} \triangleq \mathbf{R}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{S}_{n}=\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}+\mathbf{K}_{n}^{T} \mathbf{H}_{n} \mathbf{K}_{n}+\mathbf{K}_{n}^{T} \mathbf{G}_{n}+\mathbf{G}_{n}^{T} \mathbf{K}_{n} \\
& \mathbf{s}_{n}=\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}+\mathbf{K}_{n}^{T} \mathbf{H}_{n} \mathbf{0}_{n}^{f f}+\mathbf{K}_{n}^{T} \mathbf{g}_{n}+\mathbf{G}_{n}^{T} \delta \mathbf{u}_{n}^{f f} \\
& s_{n}=q_{n}+s_{n+1}+\frac{1}{2} \delta \mathbf{u}_{\mathrm{n}}^{\mathrm{fT}} \mathbf{H} \mathbf{O} \mathbf{u}_{n}^{f f}+\delta \mathbf{u}_{n}^{f f^{T}} \mathbf{g}_{n}
\end{aligned}
$$

Ansatz for Value Function

$$
V^{*}\left(n+1, \delta \mathbf{x}_{n+1}\right)=s_{n+1}+\delta \mathbf{x}_{n+1}^{T} \mathbf{s}_{n+1}+\frac{1}{2} \delta \mathbf{x}_{n+1}^{T} \mathbf{S}_{n+1} \delta \mathbf{x}_{n+1}
$$

$$
V^{*}(n, \mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{S}_{n} \mathbf{x}
$$

Ricatti Equation

$$
\begin{aligned}
\mathbf{S}_{n} & =\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}+\mathbf{K}_{n}^{T} \mathbf{H}_{n} \mathbf{K}_{n}+\mathbf{K}_{n}^{T} \mathbf{G}_{n}+\mathbf{G}_{n}^{T} \mathbf{K}_{n} \\
& =\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}-\mathbf{G}_{n}^{T} \mathbf{H}_{n}^{-1} \mathbf{G}_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{K}_{n}:=-\mathbf{H}_{n}^{-1} \mathbf{G}_{n} \\
& \mathbf{G}_{n} \triangleq \mathbf{P}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n} \\
& \mathbf{H}_{n} \triangleq \mathbf{R}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}
\end{aligned}
$$

Discrete time Riccati equation

$$
\mathbf{S}_{n}=\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}-\left(\mathbf{P}_{n}^{T}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}\right)\left(\mathbf{R}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}\right)^{-1}\left(\mathbf{P}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right)
$$

solve backwards $\quad \mathbf{S}_{N}=\mathbf{Q}_{N}$

Optimal policy

$$
\begin{aligned}
\boldsymbol{\mu}^{*}(n, \mathbf{x}) & =-\mathbf{H}_{n}^{-1} \mathbf{G}_{n} \mathbf{x} \\
& =-\left(\mathbf{R}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}\right)^{-1}\left(\mathbf{P}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right) \mathbf{x}
\end{aligned}
$$

Infinite time LQR

$$
J=\sum_{n=0}^{\infty} \frac{1}{2} \mathbf{x}_{n}^{T} \mathbf{Q} \mathbf{x}_{n}+\frac{1}{2} \mathbf{u}_{n}^{T} \mathbf{R} \mathbf{u}_{n}+\mathbf{u}_{n}^{T} \mathbf{P} \mathbf{x}_{n}
$$

Value function not a function of time

Algebraic Riccati Equation

$$
V^{*}(n, \mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{S}_{n} \mathbf{x}
$$

Value function not a function of time

$$
\begin{gathered}
\mathbf{S}_{n}=\mathbf{S}_{n+1}=: \mathbf{S} \\
\mathbf{S}_{n}=\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}-\left(\mathbf{P}_{n}^{T}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}\right)\left(\mathbf{R}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}\right)^{-1}\left(\mathbf{P}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right)
\end{gathered}
$$

Discrete time algebraic Riccati equation

$$
\mathbf{S}=\mathbf{Q}+\mathbf{A}^{T} \mathbf{S A}-\left(\mathbf{P}^{T}+\mathbf{A}^{T} \mathbf{S B}\right)\left(\mathbf{R}+\mathbf{B}^{T} \mathbf{S B}\right)^{-1}\left(\mathbf{P}+\mathbf{B}^{T} \mathbf{S} \mathbf{A}\right)
$$

$$
\boldsymbol{\mu}^{*}(\mathbf{x})=-\left(\mathbf{R}+\mathbf{B}^{T} \mathbf{S B}\right)^{-1}\left(\mathbf{P}+\mathbf{B}^{T} \mathbf{S} \mathbf{A}\right) \mathbf{x}
$$

Solve algebraic Riccati Eq.?

$$
\mathbf{S}=\mathbf{Q}+\mathbf{A}^{T} \mathbf{S A}-\left(\mathbf{P}^{T}+\mathbf{A}^{T} \mathbf{S B}\right)\left(\mathbf{R}+\mathbf{B}^{T} \mathbf{S B}\right)^{-1}\left(\mathbf{P}+\mathbf{B}^{T} \mathbf{S} \mathbf{A}\right)
$$

Can be solved going back to recursive definition:

$$
\mathbf{S}_{n}=\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}-\left(\mathbf{P}_{n}^{T}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}\right)\left(\mathbf{R}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}\right)^{-1}\left(\mathbf{P}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right)
$$

iterate (backwards in time)

$$
\text { initial condition: } \quad \mathbf{S}_{\infty}=0
$$

Computer algebra packages (e.g. Mathematica) can solve such equations

Continuous time LQR

Continuous time LQR

Continuos-time linear time variant system

$$
\begin{gathered}
\dot{\mathbf{x}}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t) \\
J=\frac{1}{2} \mathbf{x}(T)^{T} \mathbf{Q}_{T} \mathbf{x}(T)+\int_{0}^{T}\left(\frac{1}{2} \mathbf{x}(t)^{T} \mathbf{Q}(t) \mathbf{x}(t)+\frac{1}{2} \mathbf{u}(t)^{T} \mathbf{R}(t) \mathbf{u}(t)+\mathbf{u}(t)^{T} \mathbf{P}(t) \mathbf{x}(t)\right) d t .
\end{gathered}
$$

Hamilton Jacobi Bellman Equation:

$$
-\frac{\partial V^{*}}{\partial t}=\min _{u \in U}\left\{L(x, u)+\left(\frac{\partial V^{*}}{\partial x}\right)^{T} f(x, u)\right\}
$$

$$
-\frac{\partial V^{*}}{\partial t}=\min _{u \in U}\left\{L(x, u)+\left(\frac{\partial V^{*}}{\partial x}\right)^{T} f(x, u)\right\}
$$

$$
\min _{u \in U}\left\{\frac{1}{2} \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\frac{1}{2} \mathbf{u}^{T} \mathbf{R u}+\mathbf{u}^{T} \mathbf{P} \mathbf{x}+\left(\frac{\partial V^{*}}{\partial x}\right)^{T}(\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t))\right\}
$$

final value $\quad V(T, \mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{Q}_{T} \mathbf{x}$

Quadratic Ansatz for Value function

$$
\begin{align*}
V^{*}(t, \mathbf{x}) & =\frac{1}{2} \mathbf{x}^{T} \mathbf{S}(t) \mathbf{x} \\
\frac{\partial V^{*}(t, \mathbf{x})}{\partial t} & =\frac{1}{2} \mathbf{x}^{T} \dot{\mathbf{S}}(t) \mathbf{x} \tag{cfL3}\\
\frac{\partial V^{*}(t, \mathbf{x})}{\partial \mathbf{x}} & =\mathbf{S}(t) \mathbf{x}
\end{align*}
$$

substitute into:

$$
\begin{gathered}
-\frac{\partial V^{*}}{\partial t}==\min _{u \in U}\left\{\frac{1}{2} \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\frac{1}{2} \mathbf{u}^{T} \mathbf{R} \mathbf{u}+\mathbf{u}^{T} \mathbf{P} \mathbf{x}+\left(\frac{\partial V^{*}}{\partial x}\right)^{T}(\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t))\right\} \\
-\mathbf{x}^{T} \dot{\mathbf{S}}(t) \mathbf{x}=\min _{u \in U}\left\{\mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{u}^{T} \mathbf{R} \mathbf{u}+2 \mathbf{u}^{T} \mathbf{P} \mathbf{x}+2 \mathbf{x}^{T} \mathbf{S}(t) \mathbf{A} \mathbf{x}+2 \mathbf{x}^{T} \mathbf{S}(t) \mathbf{B u}\right\}
\end{gathered}
$$

Optimal control

$$
-\mathbf{x}^{T} \dot{\mathbf{S}}(t) \mathbf{x}=\min _{u \in U}\left\{\mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{u}^{T} \mathbf{R u}+2 \mathbf{u}^{T} \mathbf{P} \mathbf{x}+2 \mathbf{x}^{T} \mathbf{S}(t) \mathbf{A x}+2 \mathbf{x}^{T} \mathbf{S}(t) \mathbf{B u}\right\}
$$

$$
\nabla_{\mathbf{u}}\left[\mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{u}^{T} \mathbf{R} \mathbf{u}+2 \mathbf{u}^{T} \mathbf{P} \mathbf{x}+2 \mathbf{x}^{T} \mathbf{S}(t) \mathbf{A} \mathbf{x}+2 \mathbf{x}^{T} \mathbf{S}(t) \mathbf{B u}\right]=0
$$

$2 \mathbf{R u}+2 \mathbf{P} \mathbf{x}+2 \mathbf{B}^{T} \mathbf{S}(t) \mathbf{x}=0$

$$
\mathbf{u}^{*}(t, \mathbf{x})=-\mathbf{R}^{-1}\left(\mathbf{P}+\mathbf{B}^{T} \mathbf{S}(t)\right) \mathbf{x}
$$

Solve for S

Substitute optimal control

$$
\mathbf{u}^{*}(t, \mathbf{x})=-\mathbf{R}^{-1}\left(\mathbf{P}+\mathbf{B}^{T} \mathbf{S}(t)\right) \mathbf{x}
$$

in

$$
-\mathbf{x}^{T} \dot{\mathbf{S}}(t) \mathbf{x}=\min _{u \in U}\left\{\mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{u}^{T} \mathbf{R u}+2 \mathbf{u}^{T} \mathbf{P} \mathbf{x}+2 \mathbf{x}^{T} \mathbf{S}(t) \mathbf{A x}+2 \mathbf{x}^{T} \mathbf{S}(t) \mathbf{B u}\right\}
$$

$\mathbf{x}^{T}\left[\mathbf{S}(t) \mathbf{A}(t)+\mathbf{A}^{T}(t) \mathbf{S}(t)-\left(\mathbf{P}(t)+\mathbf{B}^{T}(t) \mathbf{S}(t)\right)^{T} \mathbf{R}^{-1}\left(\mathbf{P}(t)+\mathbf{B}^{T}(t) \mathbf{S}(t)\right)\right.$
for all states x

$$
+\mathbf{Q}(t)+\dot{\mathbf{S}}(t)] \mathbf{x}=0
$$

$$
\dot{\mathbf{S}}=-\mathbf{S A}-\mathbf{A}^{T} \mathbf{S}+\left(\mathbf{P}+\mathbf{B}^{T} \mathbf{S}\right)^{T} \mathbf{R}^{-1}\left(\mathbf{P}+\mathbf{B}^{T} \mathbf{S}\right)-\mathbf{Q}
$$

$$
\mathbf{S}(T)=\mathbf{Q}_{T}
$$

Stochastic LQR?!

