Optimal and Learning Control for Autonomous Robots Lecture 4

Jonas Buchli
Agile \& Dexterous Robotics Lab

Class logistics

Exercise I hand-out next week!

Script: LEE H 203 - Cornelia Della Casa (mornings)

Office hours: Thu, I7:30-I8:30 Room: ML J37.I
First office hour March 5

Exercise groups

Sign up for the exercises in groups of 2 :
https://ethz.doodle.com/c27fqrggtqth2x57

Please avoid single-member groups!

Erratum Script

$$
\begin{equation*}
\text { pl4 } \quad \frac{d V^{*}}{d t}=V_{t}^{*}+V_{\mathbf{x}}^{* T} \mathbf{f}+\frac{1}{2} \operatorname{Tr}\left[V_{\mathbf{x x}}^{*} E\left[(\mathbf{f}+\mathbf{B w})(\mathbf{f}+\mathbf{B w})^{T}\right] \Delta t\right] \tag{1.55}
\end{equation*}
$$

Lecture 4 Goals

\star Sequential programming to solve nonlinear programming \& optimal control problems
\star Linear-quadratic assumption
\star Derivation of ILQC (Part I)

E\#H zürich

L3 Recap

Continuous time optimal control problem

Find control $\underset{\text { control (input) }}{u^{*}(t)}=\mu^{*}(t, x(t))$ minimizing

$$
J=e^{-\beta\left(t_{f}-t_{0}\right)} \Phi\left(\mathbf{x}\left(t_{f}\right)\right)+\int_{t_{0}}^{t_{f}} e^{-\beta\left(t-t_{0}\right)} L(\mathbf{x}(t), \mathbf{u}(t)) d t
$$

Given constraints

$$
\dot{\mathbf{x}}(t)=\mathbf{f}_{t}(\mathbf{x}(t), \mathbf{u}(t))
$$

Goal: Optimal policy

$$
\mu^{*}=\arg \min _{u} J
$$

Hamilton Jacobi Bellman

Carl Gustav Jacob Jacobi (I804-I85I)

Infinite time

$$
J=\int_{t_{0}}^{\infty} e^{-\beta\left(t-t_{0}\right)} L(\mathbf{x}(t), \mathbf{u}(t)) d t
$$

Value function not function of time: $\frac{\partial V^{*}}{\partial t}=0$

$$
\beta V^{*}=\min _{\mathbf{u} \in \mathbf{U}}\left\{L(\mathbf{x}, \mathbf{u})+\left(\frac{\partial V^{*}}{\partial \mathbf{x}}\right)^{T} \mathbf{f}(\mathbf{x}, \mathbf{u})\right\}
$$

Stochastic system

$$
\dot{\mathbf{x}}(t)=\mathbf{f}_{t}(\mathbf{x}(t), \mathbf{u}(t))+\mathbf{B}(t) \mathbf{w}(t), \quad \mathbf{x}(0)=\mathbf{x}_{0}
$$

Mean:

$$
E[\mathbf{w}(t)]=\overline{\mathbf{w}}=0
$$

mean-free
Co-variance: $\quad E\left[\mathbf{w}(t) \mathbf{w}(\tau)^{T}\right]=\mathbf{W}(t) \delta(t-\tau) \quad$ uncorreated over time

$$
\begin{gathered}
E\left[\mathbf{w}(t) \mathbf{w}(\tau)^{T}\right]=0 \\
t \neq \tau
\end{gathered}
$$

Expected cost:

$$
J=E\left\{e^{-\beta\left(t_{f}-t_{0}\right)} \Phi\left(\mathbf{x}\left(t_{f}\right)\right)+\int_{t_{0}}^{t_{f}} e^{-\beta\left(t^{\prime}-t_{0}\right)} L\left(\mathbf{x}\left(t^{\prime}\right), \mathbf{u}\left(t^{\prime}\right)\right) d t^{\prime}\right\}
$$

'Stochastic' Hamilton Jacobi

Bellman Equation

$$
\left.\begin{array}{c}
\beta V^{*}(t, \mathbf{x})-V_{t}^{*}(t, \mathbf{x})=\min _{\mathbf{u}(t)}\left\{L(\mathbf{x}, \mathbf{u}(t))+V_{\mathbf{x}}^{* T} \mathbf{f}_{t}(\mathbf{x}, \mathbf{u}(t))+\frac{1}{2} \operatorname{Tr}\left[V_{\mathbf{x} \mathbf{x}}^{*} \mathbf{B}(t) \mathbf{W}(t) \mathbf{B}^{T}(t)\right]\right.
\end{array}\right\}
$$

compare to deterministic HJB: $\beta V^{*}-\frac{\partial V^{*}}{\partial t}=\min _{\mathbf{u} \in \mathrm{U}}\left\{L(\mathbf{x}, \mathbf{u})+\left(\frac{\partial V^{*}}{\partial \mathbf{x}}\right)^{T} \mathrm{f}(\mathbf{x}, \mathbf{u})\right\}$

Infinite time stochastic

 HJB$$
J=E\left\{\int_{t_{0}}^{\infty} e^{-\beta\left(t-t_{0}\right)} L(\mathbf{x}(t), \mathbf{u}(t)) d t\right\}
$$

$$
\beta V^{*}(\mathbf{x})=\min _{\mathbf{u}(t)}\left\{L(\mathbf{x}, \mathbf{u}(t))+V_{\mathbf{x}}^{*}(x) \mathbf{f}_{t}(\mathbf{x}, \mathbf{u}(t))+\frac{1}{2} \operatorname{Tr}\left[V_{\mathbf{x} \mathbf{x}}^{*} \mathbf{B}(t) \mathbf{W}(t) \mathbf{B}^{T}(t)\right]\right\}
$$

EOF Recap

L4

today: iterative algorithm for discrete time problem

time

Motivation: Example

Discovery of Complex Behaviors through Contact-Invariant Optimization

Submitted to SIGGRAPH 2012

Submission ID: 0480
[Mordatch et al, SIGGRAPH 12]
$\boldsymbol{E T H}_{\text {zürich }}$

LQR Comparison:

Fixed Goal Under Disturbance

https://www.youtube.com/user/ADRLabETH

Adaptive Real-Time Model Predictive Motion Control

Michael Neunert, Farbod Farshidian, Jonas Buchli

https://www.youtube.com/user/ADRLabETH

https://www.youtube.com/user/ADRLabETH

Unified Motion Control for Dynamic Quadrotor Maneuvers Demonstrated on Slung Load and Rotor Failure Tasks
C. de Crousaz, F. Farshidian, M. Neunert, J. Buchli

ICRA 2015

ETHzürich

[de Crousaz, Farshidian, Buchli, ICRA 2015]

$$
{ }^{\mathcal{A}}[R]_{\mathcal{B}}=\left[\begin{array}{ccc}
c \psi c \theta-s \phi s \psi s \theta & -c \phi s \psi & c \psi s \theta+c \theta s \phi s \psi \\
c \theta s \psi+c \psi s \phi s \theta & c \phi c \psi & s \psi s \theta-c \psi c \theta s \phi \\
-c \phi s \theta & s \phi & c \phi c \theta
\end{array}\right]
$$

\star underactuated \star nonlinear

$$
\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{ccc}
c \theta & 0 & -c \phi s \theta \\
0 & 1 & s \phi \\
s \theta & 0 & c \phi c \theta
\end{array}\right]\left[\begin{array}{l}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]
$$

Example from:
Kumar, Daniilidis, U Penn - MEAM 620: Robotics
https://alliance.seas.upenn.edu/~meam620

Iterative Optimal Control Algorithms

Buchli - OLCAR - 2015
$\mathbf{E T H}_{\text {winch }}$

Solve optimal control problem

$$
V^{*}(n, \mathbf{x})=\min _{\mathbf{u}_{n}}\left[L_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)+\alpha V^{*}\left(n+1, \mathbf{f}_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)\right)\right]
$$

I. Principle of optimality: Bellman / HJB Equation
2. Solve for Value function
3. Calculate optimal value function
4. Compute optimal control from value function
... not tractable...
analytical solutions can't be found in general...!

Solve optimal control

problem
I. Principle of optimality: Bellman / HJB Equation
2. Make some assumptions
3. Minimize RHS of Equation
4. ... yields conditions for optimal control
5. substitute back to solve for remaining quantities

... step back to function optimization ...

EMHzürich

Nonlinear program

$$
\begin{array}{lll}
\min _{x} f(x) & x \in \mathbb{R}^{n} \\
\text { s.t. } & f_{j}(x) \leq 0, & j=1, \ldots, N \\
& h_{j}(x)=0, & j=1, \ldots, N
\end{array}
$$

f, h nonlinear
No analytical solution in general

NLP - Lagrangian

assuming only equality constraints

$$
\begin{array}{ll}
\min _{x} f(x) \\
h_{j}(x)=0, & x \in \mathbb{R}^{n} \\
\end{array}
$$

$$
\begin{array}{ll}
L=f(x)+\sum \lambda_{i} h_{i}(x) \\
\nabla_{x} L=0 & \frac{\partial L}{\partial x_{i}}=0 \\
\nabla_{\lambda} L=0 & \frac{\partial L}{\partial \lambda_{i}}=0
\end{array}
$$

No analytical solution for general nonlinear f or h

Linear / Quadratic program

$$
\begin{aligned}
& f(x)=a_{2} x^{2}+a_{1} x+a_{0} \\
& h(x)=b_{1} x+b_{0} \\
& \quad \frac{\partial L}{\partial x}=2 a_{2} x+a_{1}+\lambda b_{1}
\end{aligned}
$$

if f quadratic and h linear optimization problem always has a solution

Sequential Quadratic Programming (SQP)

Idea:Approximate nonlinear program by a QP, solve iteratively

- Initial guess \tilde{x}_{0}
- Approximate $f(x)$ at \tilde{x}_{0} by 2 nd order Taylor series expansion

$$
\begin{aligned}
& f(x) \approx f\left(\tilde{x}_{0}\right)+\left(x-\tilde{x}_{0}\right)^{T} \nabla f\left(\tilde{x}_{0}\right)+\frac{1}{2}\left(x-\tilde{x}_{0}\right)^{T} \nabla^{2} f\left(\tilde{x}_{0}\right)\left(x-\tilde{x}_{0}\right) \quad \text { square in } \mathbf{X} \\
& f_{j}(x) \approx f_{j}\left(\tilde{x}_{0}\right)+\left(x-\tilde{x}_{0}\right)^{T} \nabla f_{j}\left(\tilde{x}_{0}\right) \quad \text { constraints: first order } \\
& h_{j}(x) \approx h_{j}\left(\tilde{x}_{0}\right)+\left(x-\tilde{x}_{0}\right)^{T} \nabla h_{j}\left(\tilde{x}_{0}\right)
\end{aligned}
$$

- yields new approximative solution \tilde{x}_{1}
-repeat
$\lim _{\underset{\text { ifprobem convex }}{\rightarrow \infty}} \tilde{x}_{i}=x^{*}$

Newton Raphson

$$
\tilde{x}_{1}=\tilde{x}_{0}-\frac{f^{\prime}\left(\tilde{x}_{0}\right)}{f^{\prime \prime}\left(\tilde{x}_{0}\right)}
$$

$$
f(x)=0.5 a x^{2}+b x+c ?
$$

f^{\prime} is linear

$$
x^{*}=\tilde{x}_{0}-\frac{f^{\prime}\left(\tilde{x}_{0}\right)}{f^{\prime \prime}\left(\tilde{x}_{0}\right)}=\tilde{x}_{0}-\frac{a \tilde{x}_{0}+b}{a}=-\frac{b}{a}
$$

... back to optimal control

Sequential Linear Quadratic Control - SLQ

$$
\begin{array}{cc}
\min _{\mu} & {\left[\Phi(\mathbf{x}(N))+\sum_{n=0}^{N-1} L_{n}(\mathbf{x}(n), \mathbf{u}(n))\right]} \\
\text { s.t. } & \mathbf{x}(n+1)=\mathbf{f}(\mathbf{x}(n), \mathbf{u}(n))
\end{array} \quad \mathbf{x}(0)=\mathbf{x}_{0}
$$

Idea: Fit simplified subproblem to original problem, solve iteratively

Class of algorithms
I. Initial guess for parameter
2. Solve sub problem: Approximate original problem with a linearquadratic problem
3. yields new approximative solution
I. Initial guess for policy
2. Solve sub problem: Approximate value function with a linearquadratic
3. yields new
approximative policy
4. repeat
4. repeat

SLQ subproblem in a nutshell

2.l Forward pass: integrate to get a state (and controls) trajectory
2.2 Backward pass

Solve simplified optimal control problem around state and control trajectory
3.Adjust guess for optimal control

choice of: approximation, solver \Rightarrow different SLQ algorithms (examples: DDP, iLQG, ILQC)

1.

Guess an initial (stabilizing) control control policy $\mu^{0}(n, x)$
2.
"Roll out": Apply the control policy to the non-linear system (1.68) (forward integration), which yields the state trajectory $\mathbf{X}_{k}=\{\mathbf{x}(0), \mathbf{x}(1), \ldots, \mathbf{x}(N)\}$ and input trajectory $\mathbf{U}_{k}=$ $\{\mathbf{u}(0), \mathbf{u}(1), \ldots, \mathbf{u}(N-1)\}$.
3. Starting with $n=N-1$, approximate the value function as a quadratic function around the pair $(\mathbf{x}(N-1), \mathbf{u}(N-1))$.
4. Having a quadratic value function, the Bellman equation can be solved efficiently. The output of this step is a control policy at time $N-1$ which minimizes the quadratic value function.
5. "Backward pass": Repeat steps 3 and 4 for every state-input pair along the trajectory yielding $\delta \mu^{k}=\{\overline{\mathbf{u}}(0, \mathbf{x}) \ldots, \overline{\mathbf{u}}(N-1, \mathbf{x})\}$. The updated optimized control inputs are then calculated with an an appropriate step-size α_{k} from

$$
\begin{equation*}
\mu^{k+1}=\mu^{k}-\alpha_{k} \delta \mu^{k} \tag{1.69}
\end{equation*}
$$

6. Iterate through steps $2 \rightarrow 5$ using the updated control policy μ^{k+1} until a termination condition is satisfied, e.g. no more cost improvement or no more control vector changes.

Notice that if our system dynamics is already linear, and the cost function quadratic, then only one iteration step is necessary to find the globally optimal solution, similar to in (1.66). In this case the SLQ controller reduces to a LQR controller.

Linearize system dynamics
 Quadratize cost

Compute value function
Compute optimal control
Solve for Riccati like equation Solve Riccati like equation

Problem statement

$$
\mathbf{x}_{n+1}=\mathbf{f}_{n}\left(\mathbf{x}_{n}, \mathbf{u}_{n}\right), \quad \mathbf{x}(0)=\mathbf{x}_{0}, \quad n \in\{0,1, \ldots, N-1\}
$$

state-vector \mathbf{x}_{n} control input vector \mathbf{u}_{n}

$$
\alpha=1
$$

$$
\begin{gathered}
J=\Phi\left(\mathbf{x}_{N}\right)+\sum_{n=0}^{N-1} L_{n}\left(\mathbf{x}_{n}, \mathbf{u}_{n}\right) \\
\boldsymbol{\mu}=\left\{\mathbf{u}_{0}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{N-1}\right\}
\end{gathered}
$$

Goal: Find locally optimal control law $\boldsymbol{\mu}^{*}$

Local linear-quadratic approximation
stable control policy $\boldsymbol{\mu}(n, \mathbf{x})$
initial condition $\overline{\mathbf{x}}(0)=\mathbf{x}_{0}$
Forward integrate $\mathbf{x}_{n+1}=\mathbf{f}_{n}\left(\mathbf{x}_{n}, \mathbf{u}_{n}\right)$ using $\boldsymbol{\mu}$
yields state and control trajectory

$$
\left\{\overline{\mathbf{x}}_{n}\right\} \quad\left\{\overline{\mathbf{u}}_{n}\right\}
$$

Linearize system dynamics, quadratize cost function around every pair:
$\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)$

Small deviation from sampled x , u :

$$
\begin{aligned}
& \delta \mathbf{x}_{n} \triangleq \mathbf{x}_{n}-\overline{\mathbf{x}}_{n} \\
& \delta \mathbf{u}_{n} \triangleq \mathbf{u}_{n}-\overline{\mathbf{u}}_{n}
\end{aligned}
$$

$$
\delta \mathbf{x}(0)=0
$$

Linearization of system dynamics

$$
\begin{aligned}
& \overline{\mathbf{x}}_{n+1}+\delta \mathbf{x}_{n+1} \mathbf{f}_{n}\left(\overline{\mathbf{x}}_{n}+\delta \mathbf{x}_{n}, \overline{\mathbf{u}}_{n}+\delta \mathbf{u}_{n}\right) \\
& \overline{\mathbf{x}}_{n+1}=\mathbf{f}_{n}\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right) \\
& \delta \mathbf{x}_{n+1} \approx \begin{array}{c}
\mathbf{A}_{n} \delta \mathbf{x}_{n}+\mathbf{B}_{n} \delta \mathbf{u}_{n},{ }^{2}\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)
\end{array} \\
& \mathbf{A}_{n}=\frac{\partial \mathbf{f}\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{x}} \\
& \mathbf{B}_{n}=\frac{\partial \mathbf{f}\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{u}} \quad \text { control gain matrix }
\end{aligned}
$$

\mathbf{A}_{n} and \mathbf{B}_{n} are independent of $\delta \mathbf{x}_{n}$ and $\delta \mathbf{u}_{n}$
\mathbf{A}_{n} and \mathbf{B}_{n} are time varying
nonlinear \rightarrow linear, time variant

Quadratization of cost function

$$
\begin{aligned}
& J=\Phi\left(\mathbf{x}_{N}\right)+\sum_{n=0}^{N-1} L_{n}\left(\mathbf{x}_{n}, \mathbf{u}_{n}\right) \\
& \text { Control costs } \\
& J \approx q_{N}+\delta \mathbf{x}_{N}^{T} \mathbf{q}_{N}+\frac{1}{2} \delta \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \delta \mathbf{x}_{N} \\
& +\sum_{n=0}^{N-1}\left\{q_{n}+\delta \mathbf{x}_{n}^{T} \mathbf{q}_{n}+\delta \mathbf{u}_{n}^{T} \mathbf{r}_{n}+\frac{1}{2} \delta \mathbf{x}_{n}^{T} \mathbf{Q}_{n} \delta \mathbf{x}_{n}+\frac{1}{2} \delta \mathbf{u}_{n}^{T} \mathbf{R}_{n} \delta \mathbf{u}_{n}+\delta \mathbf{u}_{n}^{T} \mathbf{P}_{n} \delta \mathbf{x}_{n}\right\} \\
& \forall n \in\{0, \cdots, N-1\}: \\
& q_{n}=L_{n}\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right), \quad \mathbf{q}_{n}=\frac{\partial L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{x}}, \quad \mathbf{Q}_{n}=\frac{\partial^{2} L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{x}^{2}} \\
& \mathbf{P}_{n}=\frac{\partial^{2} L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{u} \partial \mathbf{x}}, \quad \mathbf{r}_{n}=\frac{\partial L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{u}}, \quad \mathbf{R}_{n}=\frac{\partial^{2} L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{u}^{2}} \\
& n=N: \\
& q_{N}=\Phi\left(\overline{\mathbf{x}}_{n}\right), \quad \mathbf{q}_{N}=\frac{\partial \Phi\left(\overline{\mathbf{x}}_{n}\right)}{\partial \mathbf{x}}, \quad \mathbf{Q}_{N}=\frac{\partial^{2} \Phi\left(\overline{\mathbf{x}}_{n}\right)}{\partial \mathbf{x}^{2}}
\end{aligned}
$$

Note that all derivatives w.r.t. \mathbf{u} are zero for the terminal time-step N
$\mathrm{Q}, \mathrm{R}, \mathrm{P}$ are given through definition of cost!
using the LQ assumptions we can now derive an approximately-optimal control law
for this need to compute value function... plug in...

Compute Value function

 (I) Bellman Equation w. quadratic cost
Bellman Equation:

$$
V^{*}\left(n, \delta \mathbf{x}_{n}\right)=\min _{\mathbf{u}_{n}}\left[L_{n}\left(\mathbf{x}_{n}, \mathbf{u}_{n}\right)+V^{*}\left(n+1, \delta \mathbf{x}_{n+1}\right)\right]
$$

Plug in quadratic cost (Slide 45):

$$
\begin{aligned}
V^{*}\left(n, \delta \mathbf{x}_{n}\right)= & \min _{\mathbf{u}_{n}}\left[q_{n}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\frac{1}{2} \mathbf{Q}_{n} \delta \mathbf{x}_{n}\right)+\delta \mathbf{u}_{n}^{T}\left(\mathbf{r}_{n}+\frac{1}{2} \mathbf{R}_{n} \delta \mathbf{u}_{n}\right)+\delta \mathbf{u}_{n}^{T} \mathbf{P}_{n} \delta \mathbf{x}_{n}\right. \\
& \left.+V^{*}\left(n+1, \mathbf{A}_{n} \delta \mathbf{x}_{n}+\mathbf{B}_{n} \delta \mathbf{u}_{n}\right)\right]
\end{aligned}
$$

Compute Value function (2) Quadratic Ansatz for Value function

Ansatz: Quadratic Value function

$$
V^{*}\left(n+1, \delta \mathbf{x}_{n+1}\right)=s_{n+1}+\delta \mathbf{x}_{n+1}^{T} \mathbf{s}_{n+1}+\frac{1}{2} \delta \mathbf{x}_{n+1}^{T} \mathbf{S}_{n+1} \delta \mathbf{x}_{n+1}
$$

$\mathbf{S}_{n}, \mathbf{s}_{n}, s_{n}$ are unknown
and will have to be computed... later!

Compute Value function

(3) Combine Ansatz and quadratic cost

Value function with quadratic cost (I):

$$
\begin{aligned}
V^{*}\left(n, \delta \mathbf{x}_{n}\right)= & \min _{\mathbf{u}_{n}}\left[q_{n}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\frac{1}{2} \mathbf{Q}_{n} \delta \mathbf{x}_{n}\right)+\delta \mathbf{u}_{n}^{T}\left(\mathbf{r}_{n}+\frac{1}{2} \mathbf{R}_{n} \delta \mathbf{u}_{n}\right)+\delta \mathbf{u}_{n}^{T} \mathbf{P}_{n} \delta \mathbf{x}_{n}\right. \\
& \left.+V^{*}\left(n+1, \mathbf{A}_{n} \delta \mathbf{x}_{n}+\mathbf{B}_{n} \delta \mathbf{u}_{n}\right)\right]
\end{aligned}
$$

Plug in Ansatz (2- $\left.V^{*}\left(n+1, \delta x_{n+1}\right)=s_{n+1}+\delta x_{n+1}^{T} \mathbf{s}_{n+1}+\frac{1}{2} \delta x_{n+1}^{T} \mathbf{S}_{n+1} \delta x_{n+1}\right)$:

$$
\begin{aligned}
& V\left(n+1, \mathbf{A}_{n} \delta \mathbf{x}_{n}+\mathbf{B}_{n} \delta \mathbf{u}_{n}\right)= \\
& s_{n+1}+\left(\mathbf{A}_{n} \delta \mathbf{x}_{n}+\mathbf{B}_{n} \delta \mathbf{u}_{n}\right) \mathbf{s}_{n+1}+\frac{1}{2}\left(\mathbf{A}_{n} \delta \mathbf{x}_{n}+\mathbf{B}_{n} \delta \mathbf{u}_{n}\right)^{T} \mathbf{S}_{n+1}\left(\mathbf{A}_{n} \delta \mathbf{x}_{n}+\mathbf{B}_{n} \delta \mathbf{u}_{n}\right)
\end{aligned}
$$

yields for RHS ($\left.q_{n}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\frac{1}{2} \mathbf{Q}_{n} \delta \mathbf{x}_{n}\right)+\delta \mathbf{u}_{n}^{T}\left(\mathbf{r}_{n}+\frac{1}{2} \mathbf{R}_{n} \delta \mathbf{u}_{n}\right)+\delta \mathbf{u}_{n}^{T} \mathbf{P}_{n} \delta \mathbf{x}_{n}+V^{*}\left(n+1, \mathbf{A}_{n} \delta \mathbf{x}_{n}+\mathbf{B}_{n} \delta \mathbf{u}_{n}\right)\right)$

$$
\begin{aligned}
& q_{n}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\frac{1}{2} \mathbf{Q}_{n} \delta \mathbf{x}_{n}\right)+\delta \mathbf{u}_{n}^{T}\left(\mathbf{r}_{n}+\frac{1}{2} \mathbf{R}_{n} \delta \mathbf{u}_{n}\right)+\delta \mathbf{u}_{n}^{T} \mathbf{P}_{n} \delta \mathbf{x}_{n}+ \\
& s_{n+1}+\left(\mathbf{A}_{n} \delta \mathbf{x}_{n}+\mathbf{B}_{n} \delta \mathbf{u}_{n}\right) \mathbf{s}_{n+1}+\frac{1}{2}\left(\mathbf{A}_{n} \delta \mathbf{x}_{n}+\mathbf{B}_{n} \delta \mathbf{u}_{n}\right)^{T} \mathbf{S}_{n+1}\left(\mathbf{A}_{n} \delta \mathbf{x}_{n}+\mathbf{B}_{n} \delta \mathbf{u}_{n}\right)
\end{aligned}
$$

Compute Value function

$$
\begin{aligned}
& q_{n}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\frac{1}{2} \mathbf{Q}_{n} \delta \mathbf{x}_{n}\right)+\delta \mathbf{u}_{n}^{T}\left(\mathbf{r}_{n}+\frac{1}{2} \mathbf{R}_{n} \delta \mathbf{u}_{n}\right)+\delta \mathbf{u}_{n}^{T} \mathbf{P}_{n} \delta \mathbf{x}_{n}+ \\
& s_{n+1}+\left(\mathbf{A}_{n} \delta \mathbf{x}_{n}+\mathbf{B}_{n} \delta \mathbf{u}_{n}\right) \mathbf{s}_{n+1}+\frac{1}{2}\left(\mathbf{A}_{n} \delta \mathbf{x}_{n}+\mathbf{B}_{n} \delta \mathbf{u}_{n}\right)^{T} \mathbf{S}_{n+1}\left(\mathbf{A}_{n} \delta \mathbf{x}_{n}+\mathbf{B}_{n} \delta \mathbf{u}_{n}\right)
\end{aligned}
$$

'constants' $\quad q_{n}+s_{n+1}+$
'state dependent' $\quad \delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}\right)+$
$\underset{\substack{\text { 'state-squared } \\ \text { dependent' }}}{ } \quad \frac{1}{2} \delta \mathbf{x}_{n}^{T}\left(\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right) \delta \mathbf{x}_{n}+$
'control
dependent'
'control-squared dependent'
'mixed terms'

$$
\delta \mathbf{u}_{n}^{T}\left(\mathbf{r}_{n}+\mathbf{B}_{n}^{T} \mathbf{s}_{n+1}\right) \notin \mathbf{g}_{n} \triangleq \mathbf{r}_{n}+\mathbf{B}_{n}^{T} \mathbf{s}_{n+1}
$$

$$
\frac{1}{2} \delta \mathbf{u}_{n}^{T}\left(\mathbf{R}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}\right) \delta \mathbf{u}_{n}+
$$

$$
\mathbf{G}_{n} \triangleq \mathbf{P}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}
$$

$$
\mathbf{H}_{n} \triangleq \mathbf{R}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}
$$

$$
\frac{1}{2} \delta \mathbf{u}_{n}^{T}\left(\mathbf{P}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right) \delta \mathbf{x}_{n}
$$

relabel terms depending on controls

$$
\begin{aligned}
\mathbf{g}_{n} \triangleq \mathbf{r}_{n}+\mathbf{B}_{n}^{T} \mathbf{s}_{n+1} \\
\mathbf{G}_{n} \triangleq \mathbf{P}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n} \\
\mathbf{H}_{n} \triangleq \mathbf{R}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}
\end{aligned}
$$

$$
\begin{align*}
V^{*}\left(n, \delta \mathbf{x}_{n}\right)=\min _{\mathbf{u}_{n}} & {\left[q_{n}+s_{n+1}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}\right)\right.} \tag{1.80}\\
& \left.+\frac{1}{2} \delta \mathbf{x}_{n}^{T}\left(\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right) \delta \mathbf{x}_{n}+\delta \mathbf{u}_{n}^{T}\left(\mathbf{g}_{n}+\mathbf{G}_{n} \delta \mathbf{x}_{n}\right)+\frac{1}{2} \delta \mathbf{u}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{n}\right]
\end{align*}
$$

Find optimal control

$$
\begin{align*}
V^{*}\left(n, \delta \mathbf{x}_{n}\right)=\min _{\mathbf{u}_{n}}[& q_{n}+s_{n+1}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}\right) \tag{1.80}\\
& \left.+\frac{1}{2} \delta \mathbf{x}_{n}^{T}\left(\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right) \delta \mathbf{x}_{n}+\delta \mathbf{u}_{n}^{T}\left(\mathbf{g}_{n}+\mathbf{G}_{n} \delta \mathbf{x}_{n}\right)+\frac{1}{2} \delta \mathbf{u}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{n}\right]
\end{align*}
$$

minimize RHS, set gradient in respect to controls $=0$

$$
\begin{gathered}
\nabla_{\delta \mathbf{u}_{n}}\left[\delta \mathbf{u}_{n}^{T}\left(\mathbf{g}_{n}+\mathbf{G}_{n} \delta \mathbf{x}_{n}\right)+\frac{1}{2} \delta \mathbf{u}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{n}\right]=0 \\
\mathbf{g}_{n}+\mathbf{G}_{n} \delta \mathbf{x}_{n}+\mathbf{H}_{n} \delta \mathbf{u}_{n}=0
\end{gathered}
$$

$$
\mathbf{g}_{n} \triangleq \mathbf{r}_{n}+\mathbf{B}_{n}^{T} \mathbf{s}_{n+1}
$$

$$
\delta \mathbf{u}_{n}=-\mathbf{H}_{n}^{-1} \mathbf{g}_{n}-\mathbf{H}_{n}^{-1} \mathbf{G}_{n} \delta \mathbf{x}_{n} \quad \begin{aligned}
& \mathbf{G}_{n} \triangleq \mathbf{P}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n} \\
& \mathbf{H}_{n} \triangleq \mathbf{R}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}
\end{aligned}
$$

$$
\mathbf{P}_{n}=\frac{\partial^{2} L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{u} \partial \mathbf{x}}, \quad \mathbf{r}_{n}=\frac{\partial L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{u}}, \quad \mathbf{R}_{n}=\frac{\partial^{2} L\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)}{\partial \mathbf{u}^{2}}
$$

Optimal control: FF/FB

$$
\delta \mathbf{u}_{n}=-\mathbf{H}_{n}^{-1} \mathbf{g}_{n}-\mathbf{H}_{n}^{-1} \mathbf{G}_{n} \delta \mathbf{x}_{n}
$$

feed-forward term $\delta \mathbf{u}_{n}^{f f}=-\mathbf{H}_{n}^{-1} \mathbf{g}_{n}$
feedback term $\mathbf{K}_{n} \delta \mathbf{x}_{n} \quad$ feedback gain matrix $\mathbf{K}_{n}:=-\mathbf{H}_{n}^{-1} \mathbf{G}_{n}$

$$
\delta u_{n}=\delta u_{n}^{f f}+\mathbf{I}_{n} \delta \mathbf{x}_{n}
$$

feed-forward term $\delta \mathbf{u}_{n}^{f f}=-\mathbf{H}_{n}^{-1} \mathbf{g}_{n}$
feedback gain matrix $\mathbf{K}_{n}:=-\mathbf{H}_{n}^{-1} \mathbf{G}_{n}$
functions of unknown $\mathbf{S}_{n}, \mathbf{s}_{n}, s_{n}$

$$
\begin{aligned}
\mathbf{g}_{n} \triangleq \mathbf{r}_{n}+\mathbf{B}_{n}^{T} \mathbf{s}_{n+1} \\
\mathbf{G}_{n} \triangleq \mathbf{P}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n} \\
\mathbf{H}_{n} \triangleq \mathbf{R}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}
\end{aligned}
$$

Solving for $\mathbf{S}_{n}, \mathbf{s}_{n}, s_{n}$

L5 preview

Solving for $\mathbf{S}_{n}, \mathbf{s}_{n}, s_{n}$

$\delta \mathbf{u}_{n}=-\mathbf{H}_{n}^{-1} \mathbf{g}_{n}-\mathbf{H}_{n}^{-1} \mathbf{G}_{n} \delta \mathbf{x}_{n}$
feed-forward term $\delta \mathbf{u}_{n}^{f f}=-\mathbf{H}_{n}^{-1} \mathbf{g}_{n}$
feedback term $\mathbf{K}_{n} \delta \mathbf{x}_{n} \quad$ feedback gain matrix $\mathbf{K}_{n}:=-\mathbf{H}_{n}^{-1} \mathbf{G}_{n}$
replace $\quad \delta \mathbf{u}_{n}=\delta \mathbf{u}_{n}^{f f}+\mathbf{K}_{n} \delta \mathbf{x}_{n}$
plug into

$$
\begin{aligned}
V^{*}\left(n, \delta \mathbf{x}_{n}\right)=\min _{\mathbf{u}_{n}}[& q_{n}+s_{n+1}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}\right) \\
& \left.+\frac{1}{2} \delta \mathbf{x}_{n}^{T}\left(\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right) \delta \mathbf{x}_{n}+\delta \mathbf{u}_{n}^{T}\left(\mathbf{g}_{n}+\mathbf{G}_{n} \delta \mathbf{x}_{n}\right)+\frac{1}{2} \delta \mathbf{u}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{n}\right]
\end{aligned}
$$

$$
\left.\begin{array}{rl}
V^{*}\left(n, \delta \mathbf{x}_{n}\right)=\min _{\mathbf{u}_{n}}[& q_{n}+s_{n+1}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}\right)
\end{array} \quad \delta \mathbf{u}_{n}=\delta \mathbf{u}_{n}^{f f}+\mathbf{K}_{n} \delta \mathbf{x}_{n}\right]
$$

$$
\begin{aligned}
& \left(\delta \mathbf{u}_{n}^{f f}+\mathbf{K}_{n} \delta \mathbf{x}_{n}\right)^{T}\left(\mathbf{g}_{n}+\mathbf{G}_{n} \delta \mathbf{x}_{n}\right) \\
& \quad+\frac{1}{2}\left(\delta \mathbf{u}_{n}^{f f}+\mathbf{K}_{n} \delta \mathbf{x}_{n}\right)^{T} \mathbf{H}_{n}\left(\delta \mathbf{u}_{n}^{f f}+\mathbf{K}_{n} \delta \mathbf{x}_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \delta \mathbf{u}_{n}^{f f^{T}} \mathbf{g}_{n}+\delta \mathbf{u}_{n}^{f f^{T}} \mathbf{G}_{n} \delta \mathbf{x}_{n}+\delta \mathbf{x}_{n}^{T} \mathbf{K}_{n}^{T} \mathbf{g}_{n}+\delta \mathbf{x}_{n}^{T} \mathbf{K}_{n}^{T} \mathbf{G}_{n} \delta \mathbf{x}_{n} \\
+ & \frac{1}{2}\left(\delta \mathbf{u}_{n}^{f f T} \mathbf{H}_{n} \delta \mathbf{u}_{n}^{f f}+\delta \mathbf{u}_{n}^{f f T} \mathbf{H}_{n} \mathbf{K}_{n} \delta \mathbf{x}_{n}+\delta \mathbf{x}_{n}^{T} \mathbf{K}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{n}^{f f}+\delta \mathbf{x}_{n}^{T} \mathbf{K}_{n}^{T} \mathbf{H}_{n} \mathbf{K}_{n} \delta \mathbf{x}_{n}\right) \\
& \delta \mathbf{u}^{f f^{T}} \mathbf{g}+\frac{1}{2} \delta \mathbf{u}^{f f^{T}} \mathbf{H} \delta \mathbf{u}^{f f}+\delta \mathbf{x}^{T}\left(\mathbf{G}^{T} \delta \mathbf{u}^{f f}+\mathbf{K}^{T} \mathbf{g}+\mathbf{K}^{T} \mathbf{H} \delta \mathbf{u}^{f f}\right) \\
& +\frac{1}{2} \delta \mathbf{x}^{T}\left(\mathbf{K}^{T} \mathbf{H K}+\mathbf{K}^{T} \mathbf{G}+\mathbf{G}^{T} \mathbf{K}\right) \delta \mathbf{x}
\end{aligned}
$$

A D R L

$$
\begin{aligned}
& V^{*}\left(n, \delta \mathbf{x}_{n}\right)=\min _{\mathbf{u}_{n}}\left[q_{n}+s_{n+1}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}\right)\right. \\
& \left.+\frac{1}{2} \delta \mathbf{x}_{n}^{T}\left(\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right) \delta \mathbf{x}_{n}+\delta \mathbf{u}_{n}^{T}\left(\mathbf{g}_{n}+\mathbf{G}_{n} \delta \mathbf{x}_{n}\right)+\frac{1}{2} \delta \mathbf{u}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{n}\right] \\
& V^{*}\left(n, \delta \mathbf{x}_{n}\right)=s_{n}+\delta \mathbf{x}_{n}^{T} \mathbf{s}_{n}+\frac{1}{2} \delta \mathbf{x}_{n}^{T} \mathbf{S}_{n} \delta \mathbf{x}_{n} \\
& \text { Quadratic Ansate } \\
& \text { Optimal control } \\
& \delta \mathbf{u}^{f f^{T}} \mathbf{g}+\frac{1}{2} \delta \mathbf{u}^{f f^{T}} \mathbf{H} \delta \mathbf{u}^{f f}+\delta \mathbf{x}^{T}\left(\mathbf{G}^{T} \delta \mathbf{u}^{f f}+\mathbf{K}^{T} \mathbf{g}+\mathbf{K}^{T} \mathbf{H} \delta \mathbf{u}^{f f}\right) \\
& +\frac{1}{2} \delta \mathbf{x}^{T}\left(\mathbf{K}^{T} \mathbf{H K}+\mathbf{K}^{T} \mathbf{G}+\mathbf{G}^{T} \mathbf{K}\right) \delta \mathbf{x}
\end{aligned}
$$

$$
\begin{aligned}
& s_{n}+\delta \mathbf{x}_{n}^{T} \mathbf{s}_{n}+\frac{1}{2} \delta \mathbf{x}_{n}^{T} \mathbf{S}_{n} \delta \mathbf{x}_{n}= \\
& q_{n}+s_{n+1}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}\right)+\frac{1}{2} \delta \mathbf{x}_{n}^{T}\left(\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right) \delta \mathbf{x}_{n}+ \\
& \delta \mathbf{u}_{\mathbf{n}} \mathbf{f f}^{T} \mathbf{g}_{n}+\frac{1}{2} \delta \mathbf{u}_{\mathbf{n}}^{\mathbf{f f}^{T}} \mathbf{H}_{n} \delta \mathbf{u}_{\mathbf{n}}^{\mathbf{f f}}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{G}_{n}^{T} \delta \mathbf{u}_{\mathbf{n}}^{\mathbf{f f}}+\mathbf{K}_{n}^{T} \mathbf{g}_{n}+\mathbf{K}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{\mathbf{n}}^{\mathbf{f f}}\right) \\
& \\
& \quad+\frac{1}{2} \delta \mathbf{x}_{n}^{T}\left(\mathbf{K}_{n}^{T} \mathbf{H}_{n} \mathbf{K}_{n}+\mathbf{K}_{n}^{T} \mathbf{G}_{n}+\mathbf{G}_{n}^{T} \mathbf{K}_{n}\right) \delta \mathbf{x}_{n}
\end{aligned}
$$

$$
\begin{aligned}
& s_{n}+\delta \mathbf{x}_{n}^{T} \mathbf{s}_{n}+\frac{1}{2} \delta \mathbf{x}_{n}^{T} \mathbf{S}_{n} \delta \mathbf{x}_{n}= \\
& q_{n}+s_{n+1}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}\right)+\frac{1}{2} \delta \mathbf{x}_{n}^{T}\left(\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}\right) \delta \mathbf{x}_{n}+ \\
& \delta \mathbf{u}_{\mathbf{n}}^{\mathbf{f T}^{T}} \mathbf{g}_{n}+\frac{1}{2} \delta \mathbf{u}_{\mathbf{n}}^{\mathbf{f f}^{T}} \mathbf{H}_{n} \delta \mathbf{u}_{\mathbf{n}}^{\mathbf{f f}}+\delta \mathbf{x}_{n}^{T}\left(\mathbf{G}_{n}^{T} \delta \mathbf{u}_{\mathbf{n}}^{\mathbf{f f}}+\mathbf{K}_{n}^{T} \mathbf{g}_{n}+\mathbf{K}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{\mathbf{n}}^{\mathbf{f f}}\right) \\
&+\frac{1}{2} \delta \mathbf{x}_{n}^{T}\left(\mathbf{K}_{n}^{T} \mathbf{H}_{n} \mathbf{K}_{n}+\mathbf{K}_{n}^{T} \mathbf{G}_{n}+\mathbf{G}_{n}^{T} \mathbf{K}_{n}\right) \delta \mathbf{x}_{n}
\end{aligned}
$$

$$
n \in\{0, \cdots, N-1\}
$$

$$
\mathbf{S}_{n}=\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}+\mathbf{K}_{n}^{T} \mathbf{H}_{n} \mathbf{K}_{n}+\mathbf{K}_{n}^{T} \mathbf{G}_{n}+\mathbf{G}_{n}^{T} \mathbf{K}_{n}
$$

$$
\mathbf{s}_{n}=\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}+\mathbf{K}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{n}^{f f}+\mathbf{K}_{n}^{T} \mathbf{g}_{n}+\mathbf{G}_{n}^{T} \delta \mathbf{u}_{n}^{f f}
$$

$$
s_{n}=q_{n}+s_{n+1}+\frac{1}{2} \delta \mathbf{u}_{\mathbf{n}}^{\mathbf{f f}^{T}} \mathbf{H}_{n} \delta \mathbf{u}_{n}^{f f}+\delta \mathbf{u}_{n}^{f f^{T}} \mathbf{g}_{n}
$$

$$
\mathbf{S}_{N}=\mathbf{Q}_{N}, \quad \mathbf{s}_{N}=\mathbf{q}_{N}, \quad s_{N}=q_{N}
$$

note symmetry of S (if Q symmetric)!

S positive definite

$$
n \in\{0, \cdots, N-1\}
$$

$$
\begin{aligned}
& \mathbf{S}_{n}=\mathbf{Q}_{n}+\mathbf{A}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n}+\mathbf{K}_{n}^{T} \mathbf{H}_{n} \mathbf{K}_{n}+\mathbf{K}_{n}^{T} \mathbf{G}_{n}+\mathbf{G}_{n}^{T} \mathbf{K}_{n} \\
& \mathbf{s}_{n}=\mathbf{q}_{n}+\mathbf{A}_{n}^{T} \mathbf{s}_{n+1}+\mathbf{K}_{n}^{T} \mathbf{H}_{n} \delta \mathbf{u}_{n}^{f f}+\mathbf{K}_{n}^{T} \mathbf{g}_{n}+\mathbf{G}_{n}^{T} \delta \mathbf{u}_{n}^{f f} \\
& s_{n}=q_{n}+s_{n+1}+\frac{1}{2} \delta \mathbf{u}_{\mathbf{n}}{ }^{T} \mathbf{H}_{n} \delta \mathbf{u}_{n}^{f f}+\delta \mathbf{u}_{n}^{f f T} \mathbf{g}_{n} \\
& \mathbf{S}_{N}=\mathbf{Q}_{N}, \quad \mathbf{s}_{N}=\mathbf{q}_{N}, \quad s_{N}=q_{N} \\
& \begin{array}{l}
\mathbf{g}_{n} \triangleq \mathbf{r}_{n}+\mathbf{B}_{n}^{T} \mathbf{s}_{n+1} \\
\mathbf{G}_{n} \triangleq \mathbf{P}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{A}_{n} \\
\mathbf{H}_{n} \triangleq \mathbf{R}_{n}+\mathbf{B}_{n}^{T} \mathbf{S}_{n+1} \mathbf{B}_{n}
\end{array}
\end{aligned}
$$

$\star \mathrm{S}(\mathrm{n})$ are only a function of known quantities: system matrix, control gain matrix, cost terms ^ ...AND future S (backwards)
\star Principle of optimality: solve backwards in time

Optimal control

$$
\left(\overline{\mathbf{x}}_{n}, \overline{\mathbf{u}}_{n}\right)
$$

$$
\delta \mathbf{x}_{n} \triangleq \mathbf{x}_{n}-\overline{\mathbf{x}}_{n}
$$

We have derived the 'incremental' policy, thus total control is

$$
\mathbf{u}(n, x)=\overline{\mathbf{u}}_{n}+\delta \mathbf{u}_{n}^{f f}+\mathbf{K}_{n}\left(\mathbf{x}_{n}-\overline{\mathbf{x}}_{n}\right)
$$

ILQGC main iteration

0 . Initialization: we assume that an initial, feasible policy $\boldsymbol{\mu}$ and initial state \mathbf{x}_{0} is given. Then, for every iteration (i) :

1. Roll-Out: perform a forward-integration of the system dynamics (1.70) subject to initial condition \mathbf{x}_{0} and the current policy $\boldsymbol{\mu}$. Thus, obtain the nominal state- and control input trajectories $\overline{\mathbf{u}}_{n}^{(i)}, \overline{\mathbf{x}}_{n}^{(i)}$ for $n=0,1, \ldots, N$.
2. Linear-Quadratic Approximation: build a local, linear-quadratic approximation around every state-input pair $\left(\overline{\mathbf{u}}_{n}^{(i)}, \overline{\mathbf{x}}_{n}^{(i)}\right)$ as described in Equations (1.75) to (1.78).
3. Compute the Control Law: solve equations (1.84) to (1.86) backward in time and design the affine control policy through equation (1.88).
4. Go back to 1 . and repeat until the sequences $\overline{\mathbf{u}}^{(i+1)}$ and $\overline{\mathbf{u}}^{(i)}$ are sufficiently close.

Credits

Quadcopter dynamics and illustrations:
Vijay Kumar, Kostas Daniilidis U Penn - MEAM 620: Robotics https://alliance.seas.upenn.edu/~meam620

