Optimal and Learning Control for Autonomous Robots Lecture 3

Jonas Buchli
Agile \& Dexterous Robotics Lab

Class logistics

Office hours: Thu, I8-I9 Room: ML J37.I

First office hour March 5

Erratum Script

$$
\begin{equation*}
\mathrm{pl4} \quad \frac{d V^{*}}{d t}=V_{t}^{*}+V_{\mathbf{x}}^{* T} \mathbf{f}+\frac{1}{2} \operatorname{Tr}\left[V_{\mathbf{x x}}^{*} E\left[(\mathbf{f}+\mathbf{B} \mathbf{w})(\mathbf{f}+\mathbf{B} \mathbf{w})^{T}\right] \Delta t\right] \tag{1.55}
\end{equation*}
$$

Lecture 3 Goals

\star Continuous time optimal control problem \star Value function and optimal value function \star Hamilton Jacobi Bellman Equation

L2 Recap

Discrete optimal control problem finite time, deterministic

Find control $\underset{\text { control (niput) }}{u_{k}^{*}=\mu^{*}\left(\underset{\text { policy }}{k}, x_{k}\right) \quad \text { minimizing }}$

$$
J=\alpha^{N} \Phi\left(x_{N}\right)+\sum_{k=0}^{N-1} \alpha^{k} L_{k}\left(x_{k}, u_{k}\right)
$$

Given constraints

$$
x_{n+1}=f_{n}\left(x_{n}, u_{n}\right)
$$

Goal: Optimal policy

$$
\mu^{*}=\arg \min _{u} J
$$

The backwards nature of the value function

Bellman equation $V^{\mu}\left(n+1, x_{n+1}\right)$

$$
V^{\mu}(n, \mathbf{x})=L_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)+\alpha V^{\mu}\left(n+1, f_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)\right)
$$

final condition $\quad V^{\mu}(N, x)=\Phi(x)$
If I want to know V at given time n , need to start with final value and compute backwards

Optimal policy

optimal value function
$\forall n, x$
Remember: V is based on cost \Rightarrow minimize
$\forall n, x$
Optimal policy is the one that minimizes RHS

$$
\mu^{*}=\left\{\mathbf{u}_{n}^{*}, \ldots, \mathbf{u}_{N-1}^{*}\right\}=\arg \min _{\mu} V^{\mu}(n, \mathbf{x}) \quad \forall n: 0, \ldots, N-1
$$

substitute Bellman Equation into V^{μ}

$$
V^{\mu}(n, \mathbf{x})=L_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)+\alpha V^{\mu}\left(n+1, f_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)\right)
$$

Optimal Bellman Equation

Optimal Bellman Equation

$$
V^{*}(n, \mathbf{x})=\min _{\mathbf{u}_{n}}\left[L_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)+\alpha V^{*}\left(n+1, \mathbf{f}_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)\right)\right]
$$

\star Optimal Bellman Eq. computes Optrmal Value function

if u continuous:

- Bellman Equation requires working 'backwards in time' / from end to start
- Bellman Equation allows to find optimal solution one step at a time
- ... whereas Value function requires optimization of the whole control sequence at once

$$
V^{\mu}(n, x)=\alpha^{N-n} \Phi\left(x_{N}\right)+\sum_{k=n}^{N-1} \alpha^{k-n} L_{k}\left(x_{k}, u_{k}\right)
$$

A D R L

Stochastic system

Additive:

$$
x_{n+1}=f\left(x_{n}, u_{n}\right)+w_{n}
$$

Additive noise

$$
\operatorname{Un}_{\sim} \sim \sim \sim\left(\cdot \operatorname{con}_{\substack{\text { conditional Probability Distribution } \\ \text { 'function of state and control' }}}\right.
$$

General:

$$
x_{n+1}=x^{\prime}
$$

General stochastic dynamics

Expectation

Expected value of x :

Discrete $\quad E(x)=\sum_{i} P\left(x_{i}\right) x_{i} \approx \sum_{s} \frac{1}{N} x_{s}$.
states
'weighted average’

$$
\begin{gathered}
x_{s} \sim P(x) \\
\sum_{i} P\left(x_{i}\right)=1 \\
P(x) \geq 0
\end{gathered}
$$

Continuous states

$$
E(x)=\int p(x) x d x \approx \sum_{s} \frac{1}{N} x_{s}
$$

$$
\int p(x) d x=1
$$

Mathematical expectation itself is not a random variable!
Numerical approximation is a random variable.

Cost in stochastic system?

\star Even if we keep u fixed, path $\times(0 . . . \mathrm{N})$ will be different each time
\Rightarrow thus so is cost

So how to minimize the cost???

* Idea: minimize 'in average', i.e. find best solution in average
- average $=$ expected value
- minimize expected cost

Cost in stochastic problem

Expected cost:

$$
J=E\left[\alpha^{N} \Phi\left(x_{N}\right)+\sum_{k=0}^{N-1} \alpha^{k} L_{k}\left(x_{k}, u_{k}\right)\right]
$$

Cost is weighted average of all possible costs Weight = probability of outcome

In stochastic optimal control: Can not optimize outcome, but only the average outcome (expected outcome). The actual cost in a 'rollout' will always be different from the expected cost.

Value functions

Value function for policy

$$
V^{\mu}(n, x)=E\left[\alpha^{N-n} \Phi\left(x_{N}\right)+\sum_{k=n}^{N-1} \alpha^{k-n} L_{k}\left(x_{k}, u_{k}\right)\right]
$$

Optimal value function

$$
V^{*}(n, x)=\min _{\mu} E\left[\alpha^{N} \Phi\left(x_{N}\right)+\sum_{k=n}^{N-1} \alpha^{k-n} L_{k}\left(x_{k}, u_{k}\right)\right]
$$

Optimal policy

$$
\mu^{*}=\arg \min _{\mu} E\left[\alpha^{N-n} \Phi\left(x_{N}\right)+\sum_{k=n}^{N-1} \alpha^{k-n} L_{k}\left(x_{k}, u_{k}\right)\right]
$$

Value function and optimal policy are deterministic (but a function of probability distribution P)

Bellman equation

$$
E(x)=\int p(x) x d x
$$

sum over all x^{\prime}

$$
\left.V^{\mu}(n, x)=L_{n}\left(x, u_{n}\right)+E_{x^{\prime} \sim P_{f}\left(. \mid x, u_{n}\right)} V^{\mu}\left(n+1, x^{\prime}\right)\right]
$$

Optimal Bellman Equation

$$
V^{*}(n, x)=\min _{u_{n}}\left[L_{n}\left(x, u_{n}\right)+E_{x^{\prime} \sim P_{f}\left(\cdot \mid x, u_{n}\right)}\left[V^{*}\left(n+1, x^{\prime}\right)\right]\right]
$$

Optimal Control

$$
u^{*}(n)=\arg \min _{u_{n}}\left[L_{n}\left(x, u_{n}\right)+E_{x^{\prime} \sim P_{f}\left(\cdot \mid x, u_{n}\right)}\left[V^{*}\left(n+1, f_{n}\left(x, u_{n}\right)\right)\right]\right]
$$

x^{\prime} conditioned on $x(n)$ and $u(n)$

optimal control is deterministic, not a random variable!

EOF Recap

L3

Calculus Notes (I)

function vs functional
function: $\quad y=f(x) \quad x, y \in \mathbb{R}$
functional: $y=g(f) \quad f \in \mathcal{V}, y \in \mathbb{R} \quad \mathcal{V}$ vector space
functional: mapping from a vector (space) to a scalar
Remember: the 'parametrization of a vector' can be 'continuous': a continuous function is element of a vector space (cf. Fourier analysis)

$$
J=f(x(t), u(t))
$$

Calculus Notes (II)

 total vs. partial derivative$\frac{\partial}{\partial t}$ partial $\quad f(y, t)=y+g(t)$
total $\frac{d}{\mathrm{~d} t}$
$\frac{\partial}{\partial t} f(y, t)$
$\frac{\partial}{\partial t} g(t)$
$\frac{\partial}{\partial t} f(x(t), t)$

$$
\begin{gathered}
y=x(t) \\
\frac{\partial}{\partial t} g(t)
\end{gathered}
$$

$$
\frac{d}{\mathrm{~d} t} f(y, z, t)=\frac{\partial}{\partial y} f \frac{\partial}{\partial t} y+\frac{\partial}{\partial z} f \frac{\partial}{\partial t} z+\frac{\partial}{\partial q} f \frac{\partial}{\partial t} q(t)
$$

time

Continuous time system

System dynamics

$$
\dot{\mathbf{x}}(t)=\mathbf{f}_{t}(\mathbf{x}(t), \mathbf{u}(t))
$$

Cost

$$
J=e^{-\beta\left(t_{f}-t_{0}\right)} \Phi\left(\mathbf{x}\left(t_{f}\right)\right)+\int_{t_{0}}^{t_{f}} e^{-\beta\left(t-t_{0}\right)} L(\mathbf{x}(t), \mathbf{u}(t)) d t
$$

$0 \leq \beta \quad$ discount / decay rate
$\boldsymbol{E T H}_{\text {zürch }}$

Continuous time optimal control problem

Find control $\underset{\text { control (input) }}{u^{*}(t)}=\mu_{\text {policy }}^{*}(t, x(t))$ minimizing

$$
J=e^{-\beta\left(t_{f}-t_{0}\right)} \Phi\left(\mathbf{x}\left(t_{f}\right)\right)+\int_{t_{0}}^{t_{f}} e^{-\beta\left(t-t_{0}\right)} L(\mathbf{x}(t), \mathbf{u}(t)) d t
$$

Given constraints

$$
\dot{\mathbf{x}}(t)=\mathbf{f}_{t}(\mathbf{x}(t), \mathbf{u}(t))
$$

Goal: Optimal policy

$$
\mu^{*}=\arg \min _{u} J
$$

Value function

Value function

$$
\begin{aligned}
& J=e^{-\beta\left(t_{f}-t_{0}\right)} \Phi\left(\mathbf{x}\left(t_{f}\right)\right)+\int_{t_{0}}^{t_{f}} e^{-\beta\left(t-t_{0}\right)} L(\mathbf{x}(t), \mathbf{u}(t)) d t \\
&)+\int_{t}^{t_{f}} e^{-\beta\left(t^{\prime}-t\right)} L\left(\mathbf{x}\left(t^{\prime}\right), \mathbf{u}^{\mu}\left(t^{\prime}\right)\right) d t^{\prime}
\end{aligned}
$$

Effect of final cost becomes more prominent, for later time (increasing t)

Cost equals Value function at time 0

$$
J=V\left(0, x_{0}\right)
$$

Optimal Value \& Policy

optimal value function
$\forall t \in\left[t_{0}, t_{f}\right], x$
Remember: V is based on cost \Rightarrow minimize

$$
V^{*}(t, x)=\min _{\mu} V^{\mu}(t, x) \quad \forall t \in\left[t, t_{f}\right], x
$$

Optimal policy is the one that minimizes RHS

$$
\mu^{*}=u(t)=\arg \min _{\mu} V^{\mu}(t, x) \quad t \in\left[t_{0}, t_{f}\right]
$$

* Discrete system (L2) could use the Bellman equation to findV...
\star... is there an equivalent for continuous time problems?
- Hamilton Jacobi Bellman Equation

Optimal Value Function

$$
V^{*}(t, \mathbf{x})=e^{-\beta\left(t_{f}-t\right)} \Phi\left(\mathbf{x}^{*}\left(t_{f}\right)\right)+\int_{t}^{t_{f}} e^{-\beta\left(t^{\prime}-t\right)} L\left(\mathbf{x}^{*}\left(t^{\prime}\right), \mathbf{u}^{*}\left(t^{\prime}\right)\right) d t^{\prime}
$$

Hamilton-Jacobi-Bellman Equation Informal Derivation

Discretize

$$
\begin{aligned}
& \delta t=\frac{t_{f}-t_{0}}{N} \\
& \alpha=e^{-\beta \delta t} \cong 1-\beta \delta t \\
& t_{n}=t_{0}+n \delta t
\end{aligned}
$$

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\mathbf{f}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \cdot \delta t
$$

HJB Informal Derivation cont'd

$$
\tilde{V}\left(t_{n}, \mathbf{x}\right)=\alpha^{N-n} \Phi\left(\mathbf{x}_{N}\right)+\sum_{k=n}^{N-1} \alpha^{k-n} L\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)
$$

Use results from discrete optimal control (L2):

$$
\tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)=\min _{\mathbf{u} \in \mathbf{U}}\left\{L\left(\mathbf{x}, \mathbf { u } \longdiv { \delta t } + \alpha \tilde { V } ^ { * } (t _ { n + 1 } , \mathbf { x } _ { n + 1 })\right\}\right.
$$

Taylor series of RHS:
For small δt

$$
\begin{aligned}
& \tilde{V}^{*}\left(t_{n+1}, \mathbf{x}_{n+1}\right)=\tilde{V}^{*}\left(t_{n}+\delta t, \mathbf{x}+\mathbf{f}(\mathbf{x}, u) \delta t\right) \\
& =\tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)+\Delta \tilde{V}^{*}\left(t_{n}, \mathbf{x}\right) \\
& =\tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)+\frac{\partial \tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)}{\partial t} \delta t+\left(\frac{\partial \tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)}{\partial \mathbf{x}}\right)^{T} \mathbf{f}(\mathbf{x}, \mathbf{u}) \delta t
\end{aligned}
$$

Tuesday 3 March 15

$$
\tilde{V}^{*}\left(t_{n+1}, \mathbf{x}_{n+1}\right)=\tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)+\frac{\partial \tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)}{\partial t} \delta t+\left(\frac{\partial \tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)}{\partial \mathbf{x}}\right)^{T} \mathbf{f}(\mathbf{x}, \mathbf{u}) \delta t
$$

plug into

$$
\begin{aligned}
& \qquad \tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)=\min _{\mathbf{u} \in \mathbf{U}}\left\{L(\mathbf{x}, \mathbf{u}) \delta t+\alpha \tilde{V}^{*}\left(t_{n+1}, \mathbf{x}_{n+1}\right)\right\} \\
& \tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)=\min _{\mathbf{u} \in \mathbf{U}}\left\{L(\mathbf{x}, \mathbf{u}) \delta t+\alpha\left[\tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)+\frac{\partial \tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)}{\partial t} \delta t+\left(\frac{\partial \tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)}{\partial \mathbf{x}}\right)^{T} \mathbf{f}(\mathbf{x}, \mathbf{u}) \delta t\right]\right\} \\
& \text { of u, take out of min op } \\
& \qquad(1-\alpha) \tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)=\min _{\mathbf{u} \in \mathbf{U}}\left\{L(\mathbf{x}, \mathbf{u}) \delta t+\alpha\left[\frac{\partial \tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)}{\partial t} \delta t+\left(\frac{\partial \tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)}{\partial \mathbf{x}}\right)^{T} \mathbf{f}(\mathbf{x}, \mathbf{u}) \delta t\right]\right\}
\end{aligned}
$$

not dependent of u, take out of min op
$\alpha \approx 1-\beta \delta t$

$$
\beta \tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)=\min _{\mathbf{u} \in \mathbf{U}}\left\{L(\mathbf{x}, \mathbf{u}) \delta t+\alpha\left[\frac{\partial \tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)}{\partial t} \delta t+\left(\frac{\partial \tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)}{\partial \mathbf{x}}\right)^{T} \mathbf{f}(\mathbf{x}, \mathbf{u}) \delta t\right]\right\}
$$

not dependent of u, take out of min op

$$
\delta t \neq 0 \quad-\alpha \frac{\partial \tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)}{\partial t} \delta t+\beta \tilde{V}^{*}\left(t_{n}, \mathbf{x}\right) \delta t=\min _{\mathbf{u} \in \mathbf{U}}\left\{L(\mathbf{x}, \mathbf{u}) \delta t+\alpha\left(\frac{\partial \tilde{V}^{*}\left(t_{n}, \mathbf{x}\right)}{\partial \mathbf{x}}\right)^{T} \mathbf{f}(\mathbf{x}, \mathbf{u}) \delta t\right\}
$$

$$
\lim _{\delta t \rightarrow 0} \alpha{ }^{1} \beta V^{*}-\frac{\partial V^{*}}{\partial t}=\min _{\mathbf{u} \in \mathbf{U}}\left\{L(\mathbf{x}, \mathbf{u})+\left(\frac{\partial V^{*}}{\partial \mathbf{x}}\right)^{T} \mathbf{f}(\mathbf{x}, \mathbf{u})\right\}
$$

Hamilton Jacobi Bellman

Carl Gustav Jacob Jacobi (I804-I85I)

Equation
Richard Bellman 1920-84

$$
\frac{\partial V^{*}}{\partial t}=\beta V^{*}-\min _{\mathbf{u} \in \mathbf{U}}\left\{L(\mathbf{x}, \mathbf{u})+\left(\frac{\partial V^{*}}{\partial \mathbf{x}}\right)^{T} \mathbf{f}(\mathbf{x}, \mathbf{u})\right\}
$$

William Rowan Hamilton (I805-I865)

$$
\beta V^{*} \frac{\partial V^{*}}{\partial t}=\min _{\mathbf{u} \in \mathbf{U}}\left\{L(\mathbf{x}, \mathbf{u})+\left(\frac{\partial V^{*}}{\partial \mathbf{x}}\right)^{T} \mathbf{f}(\mathbf{x}, \mathbf{u})\right\}
$$

In general: Nonlinear, Partial Differential Equation Has no analytical solution... : (

Backwards in time! $V^{*}\left(t_{f}, \mathbf{x}\right)=\Phi(\mathbf{x})$

$$
\underbrace{\frac{\partial V^{\mu}}{\partial t}+\left(\frac{\partial V^{\mu}}{\partial \mathbf{x}}\right)^{T} \mathbf{f}(\mathbf{x}, \mathbf{u})}_{\text {total time derivative }}=\underbrace{\beta V^{\mu}-L(\mathbf{x}, \mathbf{u})}_{\text {immediate change of } \mathrm{V}}
$$

$$
\frac{\partial V^{*}}{\partial t}=\beta V^{*}-\min _{\mathbf{u} \in \mathbf{U}}\left\{L(\mathbf{x}, \mathbf{u})+\left(\frac{\partial V^{*}}{\partial \mathbf{x}}\right)^{T} \mathbf{f}(\mathbf{x}, \mathbf{u})\right\}
$$

Conditions for optimal control

HJB: $\quad \beta V^{*}-\frac{\partial V^{*}}{\partial t}=\min _{\mathbf{u} \in \mathbf{U}}\left\{L(\mathbf{x}, \mathbf{u})+\left(\frac{\partial V^{*}}{\partial \mathbf{x}}\right)^{T} \mathbf{f}(\mathbf{x}, \mathbf{u})\right\}$
$\min \mathrm{RHS}: \quad \frac{\delta L(\mathbf{x}, \mathbf{u})}{\delta \mathbf{u}}+\left(\frac{\partial V^{*}}{\partial \mathbf{x}}\right)^{T} \frac{\delta \mathbf{f}(\mathbf{x}, \mathbf{u})}{\delta \mathbf{u}}=\mathbf{0}$

$$
\frac{\delta L(\mathbf{x}, \mathbf{u})}{\delta \mathbf{u}}=-\left(\frac{\partial V^{*}}{\partial \mathbf{x}}\right)^{T} \frac{\delta \mathbf{f}(\mathbf{x}, \mathbf{u})}{\delta \mathbf{u}}
$$

$\frac{\delta}{\delta \mathbf{u}}$
'small variation induced by small variation of u '
immediate cost 'paid' for small change in u
'gain' of value through change in state, induced by small change in u
'gain' of value induced by small change of u

Optimum:'locally flat'!

 cost increases everywhere away from optimum $\quad \frac{d^{2} C}{d x^{2}}<0$
Infinite time

$$
J=\int_{t_{0}}^{\infty} e^{-\beta\left(t-t_{0}\right)} L(\mathbf{x}(t), \mathbf{u}(t)) d t
$$

Value function not function of time: $\frac{\partial V^{*}}{\partial t}=0$

$$
\beta V^{*}=\min _{\mathbf{u} \in \mathbf{U}}\left\{L(\mathbf{x}, \mathbf{u})+\left(\frac{\partial V^{*}}{\partial \mathbf{x}}\right)^{T} \mathbf{f}(\mathbf{x}, \mathbf{u})\right\}
$$

Stochastic system

$$
\dot{\mathbf{x}}(t)=\mathbf{f}_{t}(\mathbf{x}(t), \mathbf{u}(t))+\mathbf{B}(t) \mathbf{w}(t), \quad \mathbf{x}(0)=\mathbf{x}_{0}
$$

Mean:

$$
E[\mathbf{w}(t)]=\overline{\mathbf{w}}=0
$$

mean-free
Co-variance: $\quad E\left[\mathbf{w}(t) \mathbf{w}(\tau)^{T}\right]=\mathbf{W}(t) \delta(t-\tau) \quad$ uncorreated over time

$$
\begin{gathered}
E\left[\mathbf{w}(t) \mathbf{w}(\tau)^{T}\right]=0 \\
t \neq \tau
\end{gathered}
$$

Expected cost:

$$
J=E\left\{e^{-\beta\left(t_{f}-t_{0}\right)} \Phi\left(\mathbf{x}\left(t_{f}\right)\right)+\int_{t_{0}}^{t_{f}} e^{-\beta\left(t^{\prime}-t_{0}\right)} L\left(\mathbf{x}\left(t^{\prime}\right), \mathbf{u}\left(t^{\prime}\right)\right) d t^{\prime}\right\}
$$

Derivation of stoch. HJB

Optimal value function (cost-to-go)

cost over optimal trajectory, using optimal control

$$
V^{*}(t, \mathbf{x})=E\left\{e^{-\beta\left(t_{f}-t\right)} \Phi\left(\mathbf{x}^{*}\left(t_{f}\right)\right)+\int_{t}^{t_{f}} e^{-\beta\left(t^{\prime}-t\right)} L\left(\mathbf{x}^{*}\left(t^{\prime}\right), \mathbf{u}^{*}\left(t^{\prime}\right)\right) d t^{\prime}\right\}
$$

Leibniz' rule (differentiation under integrals):

$$
\frac{d V^{*}(t, x)}{d t}=E\left\{\beta e^{-\beta\left(t_{f}-t\right)} \Phi\left(\mathbf{x}^{*}\left(t_{f}\right)\right)+\beta \int_{t}^{t_{f}} e^{-\beta\left(t^{\prime}-t\right)} L\left(\mathbf{x}^{*}\left(t^{\prime}\right), \mathbf{u}^{*}\left(t^{\prime}\right)\right) d t^{\prime}-L\left(\mathbf{x}, \mathbf{u}^{*}(t)\right)\right\}
$$

$$
\beta V^{*}(t, \mathbf{x})-E\{\underbrace{\left.L\left(\mathbf{x}, \mathbf{u}^{*}(t)\right)\right\}}_{\text {known with cerrainty }}
$$

$$
\frac{d V^{*}(t, \mathbf{x})}{d t}=\beta V^{*}(t, \mathbf{x})-L\left(\mathbf{x}, \mathbf{u}^{*}(t)\right)
$$

intermediate result, to be used later

Intuition: immediate cost decreases cost-value, decay factor increases

Derivation of stoch. HJB

cont'd
Taylor series expansion of Value function

$$
\begin{aligned}
\Delta V^{*}(t, \mathbf{x}) & \approx \frac{d V^{*}(t, \mathbf{x})}{d t} \Delta t \\
& =E\left\{\frac{\partial V^{*}(t, \mathbf{x})}{\partial t} \Delta t+\left(\frac{\partial V^{*}(t, \mathbf{x})}{\partial \mathbf{x}}\right)^{T} \dot{\mathbf{x}} \Delta t+\frac{1}{2} \dot{\mathbf{x}}^{T} \frac{\partial^{2} V^{*}(t, \mathbf{x})}{\partial \mathbf{x}^{2}} \dot{\mathbf{x}} \Delta t^{2}\right\}
\end{aligned}
$$

Plug in

$$
\dot{\mathbf{x}}(t)=\mathbf{f}_{t}(\mathbf{x}(t), \mathbf{u}(t))+\mathbf{B}(t) \mathbf{w}(t)
$$

using shorthand notation $\quad V_{\mathbf{z}}^{*}:=\frac{\partial V^{*}}{\partial \mathbf{z}} \quad \mathbf{f}:=\mathbf{f}_{t}(\mathbf{x}(t), \mathbf{u}(t))$

$$
\frac{d V^{*}}{d t} \Delta t=E\left[V_{t}^{*} \Delta t+V_{\mathbf{x}}^{* T}(\mathbf{f}+\mathbf{B w}) \Delta t+\frac{1}{2}(\mathbf{f}+\mathbf{B} \mathbf{w})^{T} V_{\mathbf{x} \mathbf{x}}^{*}(\mathbf{f}+\mathbf{B} \mathbf{w}) \Delta t^{2}\right]
$$

$$
\begin{aligned}
& \quad \frac{d V^{*}}{d t} \Delta t=E \underbrace{V_{t}^{*} \Delta t+\underbrace{V_{\mathbf{x}}^{* T}(\mathbf{f}+\mathbf{B} \mathbf{s})}_{E[\mathbf{w}]=0} \Delta t+\frac{1}{2}(\mathbf{f}+\mathbf{B w})^{T} V_{\mathbf{x x}}^{*}(\mathbf{f}+\mathbf{B w}) \Delta t^{2}]}_{\text {known with certainty }} \\
& \Delta t \neq 0 \text { divide } \\
& \frac{d V^{*}}{d t}=V_{t}^{*}+V_{\mathbf{x}}^{* T} \mathbf{f}+\frac{1}{2} \operatorname{Tr}\{E[(\mathbf{f}+\mathbf{B w}) \underbrace{}_{V_{\mathbf{x}}^{*}} \mathbf{f}+\mathbf{B w})] \Delta t\} \\
& \operatorname{tr}[\mathbf{A B}]=\operatorname{tr}[\mathbf{B A}] \\
& \quad \frac{d V^{*}}{d t}=V_{t}^{*}+V_{\mathbf{x}}^{* T} \mathbf{f}+\frac{1}{2} \operatorname{Tr}\left[V_{\mathbf{x x}}^{*} E\left[(\mathbf{f}+\mathbf{B w})^{T}(\mathbf{f}+\mathbf{B w})\right] \Delta t\right]
\end{aligned}
$$

expand
rearrange

$$
\begin{gathered}
\frac{d V^{*}}{d t}=V_{t}^{*}+V_{\mathbf{x}}^{* T} \mathbf{f}+\frac{1}{2} \operatorname{Tr}[V_{\mathbf{x x}}^{*}(\mathbf{f r}^{T} \Delta t+\overbrace{\left.2 \mathbf{f} E\left(\mathbf{w}^{T}\right) \mathbf{B}^{T} \Delta t\right)} \mathbf{B} E\left(\mathbf{w w}^{T}\right) \mathbf{B}^{T} \Delta t)] \\
=0 \text { (mean free noise) }
\end{gathered}
$$

$$
\frac{d V^{*}}{d t}=V_{t}^{*}+V_{\mathbf{x}}^{* T} \mathbf{f}+\frac{1}{2} \operatorname{Tr}\left[V_{\mathbf{x x}}^{*}\left(\mathbf{f f}^{T} \Delta t+\mathbf{B W B}^{T} \delta(t) \Delta t\right)\right]
$$

Stoch. HJB

$$
\frac{d V^{*}}{d t}=V_{t}^{*}+V_{\mathbf{x}}^{* T} \mathbf{f}+\frac{1}{2} \operatorname{Tr}\left[V_{\mathbf{x x}}^{*}\left(\mathrm{ff}^{T} \Delta t+\mathbf{B W B}^{T} \delta(t) \Delta t\right)\right]
$$

Assuming that $\lim _{\Delta t \rightarrow 0} \delta(t) \Delta t=1$, and taking the limit as $\Delta t \rightarrow 0$,

$$
\frac{d V^{*}}{d t}=V_{t}^{*}+V_{\mathbf{x}}^{* T} \mathbf{f}+\frac{1}{2} \operatorname{Tr}\left[V_{\mathbf{x} \mathbf{x}}^{*} \mathbf{B} \mathbf{W} \mathbf{B}^{T}\right]
$$

$$
\underset{\text { Replace LHS with }}{\text { (using intermediate result s32) }} \frac{d V^{*}(t, \mathbf{x})}{d t}=\beta V^{*}(t, \mathbf{x})-L\left(\mathbf{x}, \mathbf{u}^{*}(t)\right)
$$

$$
\beta V^{*}(t, \mathbf{x})-V_{t}^{*}(t, \mathbf{x})=\min _{\mathbf{u}(t)}\left\{L(\mathbf{x}, \mathbf{u}(t))+V_{\mathbf{x}}^{* T} \mathbf{f}_{t}(\mathbf{x}, \mathbf{u}(t))+\frac{1}{2} \operatorname{Tr}\left[V_{\mathbf{x}}^{*} \mathbf{B}(t) \mathbf{W}(t) \mathbf{B}^{T}(t)\right]\right\}
$$

Hamilton Jacobi Bellman Equation

$$
V^{*}\left(t_{f}, \mathbf{x}\right)=\Phi(\mathbf{x})
$$

'Stochastic' Hamilton Jacobi

Bellman Equation

$$
\begin{gathered}
\beta V^{*}(t, \mathbf{x})-V_{t}^{*}(t, \mathbf{x})=\min _{\mathbf{u}(t)}\left\{L(\mathbf{x}, \mathbf{u}(t))+V_{\mathbf{x}}^{* T} \mathbf{f}_{t}(\mathbf{x}, \mathbf{u}(t))+\frac{1}{2} \operatorname{Tr}\left[V_{\mathbf{x x}}^{*} \mathbf{B}(t) \mathbf{W}(t) \mathbf{B}^{T}(t)\right]\right\} \\
\text { add'l } \mathbf{c o s t}
\end{gathered}
$$

compare to deterministic HJB: $\beta V^{*}-\frac{\partial V^{*}}{\partial t}=\min _{\mathbf{u} \in \mathrm{U}}\left\{L(\mathbf{x}, \mathbf{u})+\left(\frac{\partial V^{*}}{\partial \mathbf{x}}\right)^{T} \mathrm{f}(\mathbf{x}, \mathbf{u})\right\}$

	Discrete Time	Continuous Time
	Optimization Problem: $\begin{aligned} & \mathbf{x}_{n+1}=\mathbf{f}\left(\mathbf{x}_{n}, \mathbf{u}_{n}\right)+\mathbf{w}_{n} \\ & \mathbf{w}_{n} \sim P_{\mathbf{w}}\left(\cdot \mid \mathbf{x}_{n}, \mathbf{u}_{n}\right) \\ & \min _{\mathbf{u}_{0 \rightarrow N-1}} E\left\{\alpha^{N} \Phi(N)+\sum_{k=0}^{N-1} \alpha^{k} L\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)\right\} \quad \alpha \in[0,1] \end{aligned}$ Stochastic Bellman equation: $\begin{align*} V^{*}(n, \mathbf{x})= & \min _{\mathbf{u}_{n}}\left\{L\left(x, u_{n}\right)\right. \\ & \left.+\alpha E\left[V^{*}\left(n+1, \mathbf{x}_{n+1}\right)\right]\right\} \tag{Section 1} \end{align*}$ Infinite horizon: $\quad \alpha \in[0,1)$ $\Phi(N)=0 \quad V^{*}$ is not function of time.	Optimization Problem: $\begin{aligned} & d \mathbf{x}=\mathbf{f}\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right) d t+\mathbf{B}\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right) d \mathbf{w}_{t} \\ & \mathbf{w}_{t} \sim \mathcal{N}(0, \Sigma) \\ & \min _{\mathbf{u}_{0} \rightarrow t_{f}} E\left\{e^{-\beta t_{f}} \Phi\left(t_{f}\right)+\int_{0}^{t_{f}} e^{-\beta t} L\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right) d t\right\} \end{aligned}$ Stochastic HJB equation: $\begin{aligned} & \beta V^{*}(t, \mathbf{x})-V_{t}^{*}(t, \mathbf{x})=\min _{\mathbf{u}_{t}}\left\{L\left(\mathbf{x}, \mathbf{u}_{t}\right)+\right. \\ & \left.3.3 \quad V_{x}^{* T}(t, \mathbf{x}) \mathbf{f}\left(\mathbf{x}, \mathbf{u}_{t}\right)+\frac{1}{2} \operatorname{Tr}\left[V_{\mathbf{x x}}^{*}(t, \mathbf{x}) \mathbf{B} \Sigma \mathbf{B}^{T}\right]\right\} \end{aligned}$ Infinite horizon: $\Phi\left(t_{f}\right)=0 \quad V^{*}$ is not function of time.
	Optimization Problem: $\begin{array}{ll} \mathbf{x}_{n+1}=\mathbf{f}\left(\mathbf{x}_{n}, \mathbf{u}_{n}\right) \\ \min _{\mathbf{u}_{0 \rightarrow N-1}}\left\{\alpha^{N} \Phi(N)+\sum_{k=0}^{N-1} \alpha^{k} L\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)\right\} \quad \alpha \in[0,1] \end{array}$ Bellman equation: $\begin{align*} V^{*}(n, \mathbf{x})= & \min _{u_{n}}\left\{L\left(\mathbf{x}, \mathbf{u}_{n}\right)\right. \\ & \left.+\alpha V^{*}\left(n+1, \mathbf{x}_{n+1}\right)\right\} \tag{Section 1} \end{align*}$ Infinite time horizon: $\quad \alpha \in[0,1)$ $\Phi(N)=0 \quad V^{*}$ is not function of time.	Optimization Problem: $\begin{aligned} & d \mathbf{x}=\mathbf{f}\left(\mathbf{x}_{(t)}, \mathbf{u}_{(t)}\right) d t \\ & \min _{\mathbf{u}_{0 \rightarrow t_{f}}}\left\{e^{-\beta t_{f}} \Phi\left(t_{f}\right)+\int_{0}^{t_{f}} e^{-\beta t} L\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right) d t\right\} \end{aligned}$ HJB equation: $\begin{aligned} \beta V^{*}(t, \mathbf{x})-V_{t}^{*}(t, \mathbf{x})= & \min _{\mathbf{u}_{(t)}}\left\{L\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)\right. \\ & \left.+V_{\mathbf{x}}^{* T}(t, \mathbf{x}) \mathbf{f}(\mathbf{x}, \mathbf{u})\right\} \end{aligned}$ Infinite time horizon: $\Phi\left(t_{f}\right)=0 \quad V^{*}$ is not function of time.

Optimization Problem:
$\mathbf{x}_{n+1}=\mathbf{f}\left(\mathbf{x}_{n}, \mathbf{u}_{n}\right)+\mathbf{w}_{n}$
$\mathbf{w}_{n} \sim P_{\mathbf{w}}\left(\cdot \mid \mathbf{x}_{n}, \mathbf{u}_{n}\right)$
$\min _{\mathbf{u}_{0 \rightarrow N-1}} E\left\{\alpha^{N} \Phi(N)+\sum_{k=0}^{N-1} \alpha^{k} L\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)\right\} \quad \alpha \in[0,1]$
Stochastic Bellman equation:
$V^{*}(n, \mathbf{x})=\min _{\mathbf{u}_{n}}\left\{L\left(x, u_{n}\right)\right.$
$\left.+\alpha E\left[V^{*}\left(n+1, \mathbf{x}_{n+1}\right)\right]\right\}$

Infinite horizon: $\quad \alpha \in[0,1)$
$\Phi(N)=0 \quad V^{*}$ is not function of time.

Optimization Problem:
$\mathbf{x}_{n+1}=\mathbf{f}\left(\mathbf{x}_{n}, \mathbf{u}_{n}\right)$
$\min _{\mathbf{u}_{0 \rightarrow N-1}}\left\{\alpha^{N} \Phi(N)+\sum_{k=0}^{N-1} \alpha^{k} L\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)\right\} \quad \alpha \in[0,1]$
Bellman equation:
$V^{*}(n, \mathbf{x})=\min _{u_{n}}\left\{L\left(\mathbf{x}, \mathbf{u}_{n}\right)\right.$
$\left.+\alpha V^{*}\left(n+1, \mathbf{x}_{n+1}\right)\right\}$

Infinite time horizon: $\quad \alpha \in[0,1)$
$\Phi(N)=0 \quad V^{*}$ is not function of time.

Optimization Problem:
$d \mathbf{x}=\mathbf{f}\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right) d t+\mathbf{B}\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right) d \mathbf{w}_{t}$
$\mathbf{w}_{t} \sim \mathcal{N}(0, \Sigma)$
$\min _{\mathbf{u}_{0} \rightarrow t_{f}} E\left\{e^{-\beta t_{f}} \Phi\left(t_{f}\right)+\int_{0}^{t_{f}} e^{-\beta t} L\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right) d t\right\}$
Stochastic HJB equation:
$\beta V^{*}(t, \mathbf{x})-V_{t}^{*}(t, \mathbf{x})=\min _{\mathbf{u}_{t}}\left\{L\left(\mathbf{x}, \mathbf{u}_{t}\right)+\right.$

$$
\left.V_{x}^{* T}(t, \mathbf{x}) \mathbf{f}\left(\mathbf{x}, \mathbf{u}_{t}\right)+\frac{1}{2} \operatorname{Tr}\left[V_{\mathbf{x x}}^{*}(t, \mathbf{x}) \mathbf{B} \Sigma \mathbf{B}^{T}\right]\right\}
$$

Infinite horizon:
$\Phi\left(t_{f}\right)=0 \quad V^{*}$ is not function of time.

Optimization Problem:
$d \mathbf{x}=\mathbf{f}\left(\mathbf{x}_{(t)}, \mathbf{u}_{(t)}\right) d t$
$\min _{\mathbf{u}_{0 \rightarrow t_{f}}}\left\{e^{-\beta t_{f}} \Phi\left(t_{f}\right)+\int_{0}^{t_{f}} e^{-\beta t} L\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right) d t\right\}$
HJB equation:
$\begin{aligned} \beta V^{*}(t, \mathbf{x})-V_{t}^{*}(t, \mathbf{x})= & \min _{\mathbf{u}_{(t)}}\left\{L\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)\right. \\ & \left.+V_{\mathbf{x}}^{* T}(t, \mathbf{x}) \mathbf{f}(\mathbf{x}, \mathbf{u})\right\}\end{aligned}$

Infinite time horizon:
$\Phi\left(t_{f}\right)=0 \quad V^{*}$ is not function of time.

