Optimal and Learning Control for Autonomous Robots

 Lecture 2

Jonas Buchli
Agile \& Dexterous Robotics Lab

Lecture 2 Goals

\star Discrete optimal control problem
\star Value function and optimal value function
\star Bellman Equation
\star Optimal Bellman Equation
\star Optimal solution constructed backwards in time (cf. Principle of optimality)

Class logistics

Lecturer: Jonas Buchli - buchlij@ethz.ch
Assistant: Farbod Farshidian - farshidian@mavt.ethz.ch

Office hours: Thu, I8-I9 Room: ML J37.I
(no office hours this week, first office hour March 5)
Website:
http://www.adrl.ethz.ch/doku.php/adrl:education:lecture:fs2015

LI Recap

Reinforcement Learning

Learning from unspecific reward 'by trial and error' - delayed reward

Cost and reward functions

'A single number describing the quality of the solution'

Quality dependent on some parameters
Simple example: design a tank, use minimum amount of material

Complicated example: Minimize boarding time of a plane

Analytical optimum

Minima (and maxima) of functions
n-dimensional:

$$
C=f\left(x_{1}, \ldots, x_{n}\right)
$$

Minimum is an 'inflection
point' - slope is 0

Traveling Salesman

II nodes
16 edges
EMH zürich

Select optimal path?
 = control

need to look all the way to the end to find optimal path, local info (edge or next node is not telling)
1.1 Shortest ("cheapest") Path Problem. Exemple.

Start

Figure 1: Example of directed graph with cost at each edge.
'don’t be greedy!'
'delayed reward’
yields 'control' policy through look-up

Backward search

Why greedy is not a good idea...

$$
R\left(\boldsymbol{\tau}_{i}\right)=\phi_{t_{N}}+\int_{t_{i}}^{t_{N}} r_{t} d t
$$

accumulated reward is a function of a trajectory through state space
value function is a function of the state!

THM: Need to look all the way to the end to know what's optimal!
$V=$ 'total expected height gain from this position' Value function!

Map of shortest achievable distance

'How long is the shortest path from here if following the optimal route?'
'How valuable is a position?' 'What cost can I expect?'

Principle of optimality

If a path $A B C D E$ is optimal, then all parts of this path starting at intermediate position and ending at E (BCDE,CDE,DE) are optimal.

Life can onlly be understood backwards; but it must be lived forwards.

EOF Recap

Computational complexity

Original graph: II nodes - 16 edges
10 paths

$\boldsymbol{E H}_{\text {zürich }}$

(Memory) of decision trees

Size of regular tree w. branching factor b, depth n : b^{n}

Examples for branching factors:

Rubik cube ~13.34
Chess ~35
Go 250

I2 DOF Robot?
Naive assumptions:
Resolution of motor commands I/I000: $b=1000^{\wedge} \mid 2$

BUT Physics is (mostly) 'smooth': ... Similar nodes, similar subtree

Taxonomy of dynamic systems

* time: continuous vs discrete
\star state: continuous vs. discrete
\star linear vs. nonlinear
\star deterministic vs. stochastic
time

Discrete finite time, deterministic

system \& cost function

Given system with dynamics

$$
x_{n+1}=反 \mathfrak{n}\left(x_{n}, u_{n}\right) \quad \text { given } x(0)=x_{0}
$$

and cost

$$
J=\alpha^{N} \Phi\left(x_{N}\right)+\sum_{k=0}^{N-1} \alpha^{k} L_{k}\left(x_{k}, u_{k}\right)
$$

n is the discrete time index,

$$
0 \underset{\text { discountdecay factor }}{\leq \alpha} \underset{1}{1}
$$

$$
x_{n} \quad \text { is the state of the system at time } n,
$$

$$
u_{n} \quad \text { is the control input at time } n \text { and }
$$

$$
f_{n} \quad \text { is the the state transition equation. }
$$

Discrete optimal control problem finite time, deterministic

Find control $\quad u_{k}^{*}=\mu^{*}\left(k, x_{k}\right) \quad$ minimizing

$$
J=\alpha^{N} \Phi\left(x_{N}\right)+\sum_{k=0}^{N-1} \alpha^{k} L_{k}\left(x_{k}, u_{k}\right)
$$

Given constraints

$$
x_{n+1}=f_{n}\left(x_{n}, u_{n}\right)
$$

Goal: Optimal policy

$$
\mu^{*}=\arg \min _{u} J
$$

Value function

Value function for policy μ

$$
\begin{array}{lr}
\underbrace{}_{n} / x)=\alpha^{N-n} \Phi\left(x_{N}\right)+\sum_{k=n}^{N-1} \alpha^{k-n} L_{k}\left(x_{k}, u_{k}\right) \\
x_{n}=x \quad & \quad \text { Generally value function time and state dependent! } \\
x_{k+1}=f_{k}\left(x_{k}, u_{k}\right) & k=n, \ldots, N-1 \\
u_{k}=\mu\left(k, x_{k}\right) &
\end{array}
$$

Value function for final time equals cost at final time

$$
V^{\mu}(N, x)=\Phi(x)
$$

Cost vs.Value function

$$
\begin{aligned}
& J=\alpha^{N} \Phi\left(x_{N}\right)+\underbrace{\sum_{k=0}^{N-1}}_{\uparrow=0} \alpha^{k} L_{k}\left(x_{k}, u_{k}\right) \\
& (n, x)=\overbrace{\alpha^{N-n}} \Phi\left(x_{N}\right)+\underbrace{\sum_{k=1}^{N-1} \alpha^{k-n} L_{k}\left(x_{k}, u_{k}\right)}_{k=n}
\end{aligned}
$$

Effect of final cost becomes more prominent

Cost equals Value function at time 0

$$
J=V\left(0, x_{0}\right)
$$

Bellman equation
 Derivation

Starting with Value function

$$
V^{\mu}(n, x)=\alpha^{N-n} \Phi\left(x_{N}\right)+\sum_{k=n}^{N-1} \alpha^{k-n} L_{k}\left(x_{k}, u_{k}\right)
$$

factoring out first step

$$
V^{\mu}(n, x)=L_{n}\left(x, u_{n}\right)+\alpha^{N-n} \Phi\left(x_{N}\right)+\sum_{\alpha^{N-n-1}}^{\sum^{\mu}}(n, x) \alpha^{k-n} L_{k}\left(x_{k}, u_{k}\right)
$$

Bellman equation

$$
V^{\mu}(n, \mathbf{x})=L_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)+\alpha V^{\mu}\left(n+1, f_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)\right)
$$

final condition $\quad V^{\mu}(N, x)=\Phi(x)$

The backwards nature of the value function

Bellman equation $V^{\mu}\left(n+1, x_{n+1}\right)$

$$
V^{\mu}(n, \mathbf{x})=L_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)+\alpha V^{\mu}\left(n+1, f_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)\right)
$$

final condition $\quad V^{\mu}(N, x)=\Phi(x)$
If I want to know V at given node n, need to start with final value and compute backwards

Optimal policy

optimal value function
$\forall n, x$
Remember: V is based on cost \Rightarrow minimize

Optimal policy is the one that minimizes RHS

$$
\mu^{*}=\left\{\mathbf{u}_{n}^{*}, \ldots, \mathbf{u}_{N-1}^{*}\right\}=\arg \min _{\mu} V^{\mu}(n, \mathbf{x}) \quad \forall n: 0, \ldots, N-1
$$

substitute Bellman Equation into V^{μ}

$$
V^{\mu}(n, \mathbf{x})=L_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)+\alpha V^{\mu}\left(n+1, f_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)\right)
$$

Optimal Bellman Equation

Optimal Bellman Equation

$$
V^{*}(n, \mathbf{x})=\min _{\mathbf{u}_{n}}\left[L_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)+\alpha V^{*}\left(n+1, \mathbf{f}_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)\right)\right]
$$

\star Optimal Bellman Eq. computes Optrmal Value function

if u continuous:

$$
\frac{\partial}{\partial \mathbf{u}_{n}}\left[L_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)+\alpha V^{*}\left(n, \mathbf{f}_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)\right)\right]=0
$$

- Bellman Equation requires working 'backwards in time' / from end to start
- Bellman Equation allows to find optimal solution one step at a time
- ... whereas Value function requires optimization of the whole control sequence at once

$$
V^{\mu}(n, x)=\alpha^{N-n} \Phi\left(x_{N}\right)+\sum_{k=n}^{N-1} \alpha^{k-n} L_{k}\left(x_{k}, u_{k}\right)
$$

A D R L

Optimal Control

$$
\mathbf{u}^{*}(n, \mathbf{x})=\arg \min _{\mathbf{u}_{n}}\left[L_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)+\alpha V^{*}\left(n+1, \mathbf{f}_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)\right)\right]
$$

Optimal value and control

$$
\mathbf{u}^{*}(n, \mathbf{x})=\arg \min _{\mathbf{u}_{n}}\left[L_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)+\alpha V^{*}\left(n+1, \mathbf{f}_{n}\left(\mathbf{x}, \mathbf{u}_{n}\right)\right)\right]
$$

final condition $V^{*}(N, x)=\Phi(x)$
(1) init:
set $\mathrm{n}=\mathrm{N}$
compute final cost set $V(N)=$ final cost

$$
V^{*}(n-1, \mathbf{x})=\min _{\mathbf{u}_{n-1}}\left[L_{n-1}\left(\mathbf{x}, \mathbf{u}_{n-1}\right)+\alpha V^{*}\left(n, \mathbf{f}_{n-1}\left(\mathbf{x}, \mathbf{u}_{n-1}\right)\right)\right]
$$

(2) 'for all' $x_{_}\{n\}$ compute Value function: V*(n-1,x)
-> optimal control at step $n-1, u_{1} o p t(x, n-1)$
(4) $\mathrm{n}=\mathrm{n}-1$
(5) if ($\mathrm{n}==0$) : halt, else: goto step 2

$$
\frac{\partial}{\partial \mathbf{u}_{n-1}}\left[L_{n-1}\left(\mathbf{x}, \mathbf{u}_{n-1}\right)+\alpha V^{*}\left(n, \mathbf{f}_{n-1}\left(\mathbf{x}, \mathbf{u}_{n-1}\right)\right)\right]=0
$$

A D R L
numerical root finding - iterative method

Optimal control along optimal trajectory

- Note the cost of evaluation (at each time step, for each state, 'try' all controls)
- Instead of whole state space: neighborhood of optimal solution
\Rightarrow Chicken \& egg:What's the optimal solution
\Rightarrow Initial guess
\Rightarrow Requires other type of algorithms (e.g. ILQC)
- Approximations

Important note: picking an initial $\times(0)$ uniquely determines the optimal sequence both in state and controls

Infinite time horizon

$$
\begin{gathered}
J=\sum_{k=0}^{\infty} \alpha^{k} L\left(x_{k}, u_{k}\right), \quad \alpha \in[0,1] \\
V^{*}(n, x)=\min _{\mu}\left[\sum_{k=n}^{\infty} \alpha^{k-n} L\left(x_{k}, u_{k}\right)\right] \\
V^{*}(n+\Delta n, x)=\min _{\mu}\left[\sum_{k=n+\Delta n}^{\infty} \alpha^{k-n-\Delta n} L\left(x_{k}, u_{k}\right)\right] \quad k^{\prime}=k-\Delta n \\
=\min _{\mu}[\sum_{k^{\prime}=n}^{\infty} \alpha^{k^{\prime}-1} \underbrace{\underbrace{}_{\text {independent of time such } \alpha \text { that cost is finite }}}_{k=k^{\prime}+\Delta n} \rightarrow x_{k^{\prime}+\Delta n}, u_{k^{\prime}+\Delta n})] \quad x_{x_{k+1}=f\left(x_{k}, u_{k}\right)} \\
x(n+\Delta n)=x(n)
\end{gathered}
$$

$$
V^{*}(n, x)=V^{*}(n+\Delta n, x)=V^{*}(x)
$$

Finite vs. infinite

If a final value (finite time), time matters, i.e. it matters at what time in given state

If no final value (infinite time) only state matters

Bellman Equation

 discrete, deterministic, infinite time$$
V^{*}(n, x)=V^{*}(n+\Delta n, x)=V^{*}(x)
$$

$$
V^{*}(x)=\min _{u}\left\{L(x, u)+\alpha V^{*}(f(x, u))\right\}
$$

Stochastic system

$$
x_{n+1}=f\left(x_{n}, u_{n}\right)+w_{n}
$$

Additive noise

$$
\begin{aligned}
& w_{n} \sim P_{w}\left(\cdot \mid x_{n}, u_{n}\right) \\
& x_{n+1}=x^{\prime} \begin{array}{l}
\text { Conditional Probability } \text { Distribution } \\
\text { function of State and control } \\
\hline
\end{array}
\end{aligned}
$$

General stochastic dynamics

Example

Cost in stochastic system?

\star Even if we keep u fixed, path $\times(0 . . . \mathrm{N})$ will be different each time
\Rightarrow thus so is cost

So how to minimize the cost???

* Idea: minimize 'in average', i.e. find best solution in average
- average $=$ expected value
- minimize expected cost

Expectation

Expected value of x :
$\begin{gathered}\text { Discrete } \\ \text { states }\end{gathered} E(x)=\sum_{i} P\left(x_{i}\right) x_{i} \approx \sum_{s} \frac{1}{N} x_{s}$
'weighted average’

$$
\begin{gathered}
x_{s} \sim P(x) \\
\sum_{i} P\left(x_{i}\right)=1 \\
P(x) \geq 0
\end{gathered}
$$

Continuous states

$$
E(x)=\int p(x) x d x \approx \sum_{s} \frac{1}{N} x_{s}
$$

$$
\int p(x) d x=1
$$

Mathematical expectation itself is not a random variable!
Numerical approximation is a random variable.

Conditional probability and expectation

$$
\begin{aligned}
E(x \mid y) & =\sum_{i} P\left(x_{i}, y\right) x_{i} \\
E(x \mid y) & =\int p(x, y) x d x
\end{aligned}
$$

Cost in stochastic problem

Expected cost:

$$
J=E\left[\alpha^{N} \Phi\left(x_{N}\right)+\sum_{k=0}^{N-1} \alpha^{k} L_{k}\left(x_{k}, u_{k}\right)\right]
$$

Cost is weighted average of all possible costs Weight = probability of outcome

In stochastic optimal control: Can not optimize outcome, but only the average outcome (expected outcome). The actual cost in a 'rollout' will always be different from the expected cost.

Value functions

Value function for policy

$$
V^{\mu}(n, x)=E\left[\alpha^{N-n} \Phi\left(x_{N}\right)+\sum_{k=n}^{N-1} \alpha^{k-n} L_{k}\left(x_{k}, u_{k}\right)\right]
$$

Optimal value function

$$
V^{*}(n, x)=\min _{\mu} E\left[\alpha^{N} \Phi\left(x_{N}\right)+\sum_{k=n}^{N-1} \alpha^{k-n} L_{k}\left(x_{k}, u_{k}\right)\right]
$$

Optimal policy

$$
\mu^{*}=\arg \min _{\mu} E\left[\alpha^{N-n} \Phi\left(x_{N}\right)+\sum_{k=n}^{N-1} \alpha^{k-n} L_{k}\left(x_{k}, u_{k}\right)\right]
$$

Value function and optimal policy are deterministic (but a function of probability distribution P)

Bellman equation

$$
E(x)=\int p(x) x d x
$$

sum over all x '

$$
\left.V^{\mu}(n, x)=L_{n}\left(x, u_{n}\right)+E_{x^{\prime} \sim P_{f}\left(\mid x, u_{n}\right)} V^{\mu}\left(n+1, x^{\prime}\right)\right]
$$

Optimal Bellman Equation

$$
V^{*}(n, x)=\min _{u_{n}}\left[L_{n}\left(x, u_{n}\right)+E_{x^{\prime} \sim P_{f}\left(\cdot \mid x, u_{n}\right)}\left[V^{*}\left(n+1, x^{\prime}\right)\right]\right]
$$

Optimal Control

$$
u^{*}(n)=\arg \min _{u_{n}}\left[L_{n}\left(x, u_{n}\right)+E_{x^{\prime} \sim P_{f}\left(\cdot \mid x, u_{n}\right)}\left[V^{*}\left(n+1, f_{n}\left(x, u_{n}\right)\right)\right]\right]
$$

x ' conditioned on $x(n)$ and $u(n)$

optimal control is deterministic, not a random variable!

Optimal control

$u^{*}(n)=\arg \min _{u_{n}}\left[L_{n}\left(x, u_{n}\right)+E_{x^{\prime} \sim P_{f}\left(\cdot \mid x, u_{n}\right)}\left[V^{*}\left(n+1, f_{n}\left(x, u_{n}\right)\right)\right]\right]$ final condition $V^{*}(N, x)=\Phi(x)$
(1) init: compute final cost $\binom{$ deterministic }{$V^{*}(n-1, \mathbf{x})=\min _{\mathbf{u}_{n-1}}\left[L_{n-1}\left(\mathbf{x}, \mathbf{u}_{n-1}\right)+\alpha V^{*}\left(n, \mathbf{f}_{n-1}\left(\mathbf{x}, \mathbf{u}_{n-1}\right)\right)\right]}$ set $n=N$, set $V(N)=$ final cost

$$
V^{*}(n-1, \mathbf{x})=\min _{\mathbf{u}_{n-1}}\left[L_{n-1}\left(\mathbf{x}, \mathbf{u}_{n-1}\right)+E_{\mathbf{x}^{\prime} \sim P_{f}\left(\cdot \mid \mathbf{x}, \mathbf{u}_{n-1}\right)}\left[V^{*}\left(n, \mathbf{x}^{\prime}\right)\right]\right]
$$

(2) 'for all' $x_{-}\{n\}$ compute Value function: V*(n-1,x)
-> optimal control at step $n-1, u_{-}$opt $(x, n-1)$
(4) $n=n-1$
(5) if $(\mathrm{n}==0)$: halt, else: goto step 2

$$
\mathbf{u}^{*}(n-1, \mathbf{x})=\arg \min _{\mathbf{u}_{n-1}}\left[L_{n-1}\left(\mathbf{x}, \mathbf{u}_{n-1}\right)+E_{\mathbf{x}^{\prime} \sim P_{f}\left(\cdot \mid \mathbf{x}, \mathbf{u}_{n-1}\right)}^{\text {'sum’ }}\left[V^{*}\left(n, \mathbf{x}^{\prime}\right)\right]\right]
$$

Computational complexity of stochastic problem

- Note the cost of naive evaluation is even higher for stochastic systems (at each time step, for each state, 'try' all controls, with all possible 'random' events)

Infinite, stochastic

$$
J=E\left[\sum_{k=0}^{\infty} \alpha^{k} L\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)\right] \quad \alpha \in[0,1)
$$

Opt. value and Bellman

Eq.

$$
\begin{aligned}
& V^{*}(\mathbf{x})=\min _{\mu} E\left[\sum_{n=0}^{\infty} \alpha^{n} L\left(\mathbf{x}_{n}, \mathbf{u}_{n}\right)\right] \\
& V^{*}(\mathbf{x})=\min _{\mathbf{u}_{n}}\left\{L(\mathbf{x}, \mathbf{u})+\alpha E\left[V^{*}\left(\mathbf{x}^{\prime}\right)\right]\right\}
\end{aligned}
$$

