Optimal and Learning Control for Autonomous Robots Lecture

Jonas Buchli
Agile \& Dexterous Robotics Lab

Lecture I

- Intro
-Adminstrativa and Logistics
-Reinforcement learning
-some important concepts and terms
- Modeling / math. prerequisites
- Examples

LI Reading material:
 Script Ch I.I

Sunday 22 February 15

Learning Complex Movement Skills

CLMC Lab

ADRL

ETHzürich

How can a robot 'program' itself?

How to 'guide'

 the solution?
Optimal and learning control

\star Formalizing the problem of 'how to do things well'
\star Derive 'ways to do things well'

Class logistics

Lecturer: Jonas Buchli - buchlij@ethz.ch
Assistant: Farbod Farshidian - farshidian@mavt.ethz.ch
Office hours: Thu, I8-I9 Room:TBA
(no office hours this week)
Website:
http://www.adrl.ethz.ch/doku.php/adrl:education:lecture:fs2015
Language: English

Exercises/Exam

Exercises
-3 programming exercises

- starting L5, 8, I2
- exercises graded pass/fail
- grade boost for passed exercises
-ExI: 0.I, Ex 2: 0.05, Ex 3:0.I
- solutions will be available at end of semester
-topics of exercises will be used for exam
Exam: written, english, 2 h more details TBA

Prerequisites

Required

Motivation \& Interest!

Programming

Beneficial

Basic systems theory
Basic control theory
Basic Calculus
Basic Functional Analysis

$$
J=E\left\{\Phi\left(\mathbf{x}\left(t_{f}\right)\right)+\int_{t_{0}}^{t_{f}} L\left(\mathbf{x}\left(t^{\prime}\right), \mathbf{u}\left(t^{\prime}\right)\right) d t^{\prime}\right\}
$$ Probability

$$
\begin{aligned}
\Delta V^{*}(t, x) & \approx \frac{d V^{*}(t, x)}{d t} \Delta t \\
& =E\left\{\frac{\partial V^{*}(t, x)}{\partial t} \Delta t+\left(\frac{\partial V^{*}(t, x)}{\partial x}\right)^{T} \dot{x} \Delta t+\frac{1}{2} \dot{x}^{T} \frac{\partial^{2} V^{*}(t, x)}{\partial x^{2}} \dot{x} \Delta t^{2}\right\}
\end{aligned}
$$

Outline

402

The students will learn the fundamentals of optimal and learning control. They will learn how these fundamental ideas can be applied to real world problems encountered in autonomous and articulated robots.

After this lecture the students will have the understanding and tools to apply learning and optimal control to problems encountered in robotics and other fields.

Relationship between Optimal Control and Learning

Lecture	Syllabus	Sections
Lecture 1	Introduction, Problem Definition, Principle of optimality,	1.1
Lecture 2	Finite/ Infinite time horizon Bellman equation	1.2
Lecture 3	Finite/ Infinite time horizon HJB equation	1.3
Lecture 4	Iterative Algorithm SQP \& SLQ, Motivating for robotic platform	1.5
Lecture 5	ILQC	1.6
Lecture 6	LQR/ LQG continuous and discrete time	1.7 \& 1.8
Lecture 7	MDP, Policy evaluation, Value Iteration	
Lecture 8	Monte Carlo, Q-Learning	
Lecture 9	Path Integral, Function approximation	
Lecture 10	PI2 - for trajectory optimization	
Lecture 11	PI2 - for motion control optimization, Variable impedance learning	
Lecture 12	The Framework of motion control - form model-based to sample-based	
Lecture 13	Policy Gradient, Finite difference	
Lecture 14	Summary and Exam Discussion	

Subject to change!

Literature/Script

Script hardcopy will be given.

Books:

Stengel, Optimal Control and Estimation
http://www.amazon.com/Optimal-Control-Estimation-Dover-Mathematics/dp/0486682005
Bertsekas, Dynamic Programming \& Optimal Control http://www.amazon.com/Dynamic-Programming-Optimal-Control-Vol/dp/I886529264

Sutton \& Barto, Reinforcement Learning:An Introduction
http://www.amazon.com/Reinforcement-Learning-Introduction-Adaptive-Computation/dp/0262I9398।

Papers - will be on website

Feedback appreciated!

Lecture I Goals

\star Have heard the most important terminology of optimal control
\star Understand the scalar nature of cost and reward
\star Understand optimization as function minimization
\star Understand the principle of optimality

Optimal and learning control

Optimal and learning control

« Formalizing the problem of 'how to do things well'
\star Derive 'ways to do things well'

Reinforcement Learning

Learning from unspecific reward 'by trial and error' - delayed reward

Formalize learning problem

Need to formalize this problem... ideally on a 'high' level...

Reinforcement learning

 terminology\star Reward (cost) What is good?
\star Policy / Controller
What do do?
\star Value function
Which states are good (potential reward!)
\star System dynamics / Model
What happens 'next'?
Can be probabilistic

The goal hitting a baseball is....

$R=$ distance of ball
路
EMH zürich

Cost and reward functions

'A single number
 describing the quality of the solution'

Quality dependent on some parameters
Simple example: design a tank, use minimum amount of material

Complicated example: Minimize boarding time of a plane

Example - 'Static' optimization

\Leftrightarrow parameter optimization

How to solve for optimum?

\checkmark Analytically

$\sqrt{ }$ Numerically using a model: Root finding/Gradient descent
\checkmark Sample real world:
Numerically process 'experience’
Explicit gradient / implicit gradient

NOTE - to be more coherent with the other introduced notation, the x in the following example should be replaced by θ (parameters of the policy, i.e. the x in this example is not to be confused with the states).

Example: build a tank

Use minimum material, for a given Volume

 $V=\pi r^{2} h$ Model! Sampled...
$\left\{\begin{array}{l}\text { Һ } \quad \text { Cost: } \quad A=\pi r^{2} \downarrow+2 \pi r h \\ h=\frac{V}{\pi r^{2}} \Rightarrow A=\pi r^{2}+\frac{2 V}{r}\end{array}\right.$

1.5	20.40
	2.5

r_opt is approx. I. 5

A D R L Naive approach: brute force search

How to solve for optimum?

\checkmark Analytically

$\sqrt{ }$ Numerically using a model: Root finding/Gradient descent
\checkmark Sample real world:
Numerically process 'experience’
Explicit gradient / implicit gradient

Analytical optimum

Minima (and maxima) of functions
I dimensional:

Minimum is an 'inflection point' - slope is 0
$\boldsymbol{E T H}_{\text {zürich }}$

Example: build a tank

 Use minimum material, for a given VolumeCost: $A=\pi r^{2}+2 \pi r h$

$$
\begin{aligned}
& V=\pi r^{2} h \\
& h=\frac{V}{\pi r^{2}} \quad A=\pi r^{2}+\frac{2 V}{r}
\end{aligned}
$$

Parameter: r

$$
\begin{aligned}
& \frac{\partial A}{\partial r}=2 \pi r-\frac{2 V}{r^{2}}=0 \\
& 2 \pi r^{3}-2 V=0 \quad \Rightarrow r^{3}=\frac{2 V}{2 \pi}
\end{aligned}
$$

$$
\Rightarrow \quad V=10 \rightarrow r=1.4710
$$

Root finding

Example I: Using analytical gradient, find roots

$$
\begin{aligned}
& C(x)=a\left(x-x_{0}\right)^{2}+b\left(x-x_{1}\right)+c \\
& \frac{\partial C(x)}{\partial x}=2 a\left(x-x_{0}\right)+b \\
& x_{\text {opt }}=x_{0}-\frac{b}{2 a}
\end{aligned}
$$

Example I.I:4th order polynomial

$$
\begin{gathered}
C(x)=a x^{4}+b x^{3}+c x^{2}+d x+e \\
\frac{\partial C(x)}{\partial x}=4 a x^{3}+3 b x^{2}+c x+d
\end{gathered}
$$

Example I.2: nth order polynomial

$$
\begin{gathered}
C(x)=\sum_{i=0}^{n} w_{i} x^{i} \\
\frac{\partial C(x)}{\partial x}=\sum_{i=1}^{n} i w_{i} x^{i-1}
\end{gathered}
$$

Use numerical gradient \rightarrow gradient descent

Analytical optimum

 Minima (and maxima) of functions n-dimensional:$$
C=f\left(x_{1}, \ldots, x_{n}\right)
$$

Minimum is an 'inflection
point' - slope is 0

Gradient descent

Idea: want to go in direction where C decreases: negative gradient

$$
\mathbf{x}_{n+1}=\mathbf{x}_{n}-\gamma_{n} \nabla F\left(\mathbf{x}_{n}\right), n \geq 0
$$

How to solve for optimum?

$\sqrt{ }$ Analytically
$\sqrt{ }$ Numerically using a model: Root finding/Gradient descent Learning
\checkmark Sample real world:
Numerically process 'experience’
Explicit gradient / implicit gradient

[EOF EXAMPLE]

How can a robot 'program' itself?

What's a robot?

Robot model

Rigid body connected by discrete joints

Equations of motions?

$$
M \ddot{q}+C(q, \dot{q})+G(q)=\tau
$$

Model of a simple robot

Measurements: Joint angles: $q=\left[\begin{array}{l}q_{1} \\ q_{2} \\ q_{3}\end{array}\right]$
Actuation: joint torques

$$
\tau=\left[\begin{array}{l}
\tau_{1} \\
\tau_{2} \\
\tau_{3}
\end{array}\right]
$$

Governing physics: Rigid body dynamics $M \ddot{q}+C(q, \dot{q})+G(q)=\tau$

System states:

$$
x=\left[\begin{array}{l}
q \\
\dot{q}
\end{array}\right]
$$

Controls/inputs/actions:

$$
\mathbf{I}_{1}
$$

$$
\begin{aligned}
& \dot{x}=f(x)+G(x) u= \\
& {\left[\begin{array}{c}
\dot{q}(q)^{-1}(-C(q, \dot{q})-G(q))
\end{array}\right]+\left[\begin{array}{c}
0 \\
M(q)^{-1}
\end{array}\right]^{T} u}
\end{aligned}
$$

Controller/Policy

A mapping from states to actions, possibly dependent on time

$$
\begin{array}{ll}
\text { actuation }=\mathrm{f}(\text { states,time }) & u=f(x, t) \\
u=f(t) & \text { 'forward/open loop' } \\
u=f(x) & \text { 'state feedback' } \\
u=A x & \text { 'linear state feedback' } \\
u=A x+B c(t) & \begin{array}{c}
\text { 'linear state feedback } \\
\text { external input' }
\end{array}
\end{array}
$$

$u=A(t) x \quad$ 'linear time varying state feedback'

Disturbance rejection vs

Nominal behavior

Nominal behavior/performance What happens if everything works as assumed

Feedforward controller

Disturbance rejection/robust performance:
What is the behavior of the system if 'nominal assumptions' are violated and/or unexpected things happen

General control structure

What is a 'program'?

 print "hello world"Policies
Controllers

What is a 'programming'?

Quadratic program?
Dynamic programming?
ETHzürich

Optimal control?

How to solve for optimum with dynamics affecting the cost?

(static) function

$$
X=f(\theta)
$$

function
$u=f(x, t)$

system dynamics

$$
\dot{x}=f(x, t)
$$

Dynamic optimization

'optimization of functions'

Optimal control

 in continuous stochastic state-action spaces

Optimal control

in continuous stochastic state-action spaces

Find u that maximizes reward (minimizes cost)

$$
R\left(\boldsymbol{\tau}_{i}\right)=\phi_{t_{N}}+\int_{t_{i}}^{t_{N}} r_{t} d t
$$

given diff. constraints (system dynamics)

$$
\dot{\mathbf{x}}_{t}=\mathbf{f}\left(\mathbf{x}_{t}, t\right)+\mathbf{G}\left(\mathbf{x}_{t}\right)\left(\mathbf{u}_{t}+\epsilon_{t}\right)
$$

ㅍㅍ﹎ürich

Control Policies

Naive: state - action mapping

Problem: dimensions!

Buchii - OLCAR - 2015 - LI
$\boldsymbol{E T H}_{\text {zürch }}$

Cost and Reward

'how bad is a solution' - cost
'how good is a solution' - reward

all is relative: costs/rewards can have arbitrary offsets learning progress is measured relative to previous costs/rewards

Cost and Reward

(Accumulated/Total) Cost

$$
R\left(\boldsymbol{\tau}_{i}\right) \underset{\text { Final cost }}{\phi_{t_{N}}}+\int_{t_{i}}^{t_{N}} r_{t} d t
$$

$$
r_{t}=r\left(\mathbf{x}_{t}, \mathbf{u}_{t}, t\right)=q_{t}+\frac{1}{2} \mathbf{u}_{t}^{T} \mathbf{R} \mathbf{u}_{t}
$$

Intern. cost
examples

$$
\begin{aligned}
& r_{t=1.5 s}^{\text {waypoint }}=\left|\mathbf{x}_{t=1.5 s}-\mathbf{x}^{\text {waypoint }}\right| \\
& r_{t}^{\text {falling }}=1 \\
& r_{t}^{C o P}=\frac{1}{N}\left|\mathbf{c}_{t}-\mathbf{c}^{\text {default }}\right|
\end{aligned}
$$

Final cost

$$
\phi_{t_{N}}=10^{4} \cdot\left(\psi_{\max }-\psi_{N}\right)
$$

$$
\mathbf{u}=-\mathbf{K}_{P}\left(\mathbf{q}-\mathbf{q}_{d}\right)-\mathbf{K}_{D}\left(\dot{\mathbf{q}}-\dot{\mathbf{q}}_{d}\right)+\mathbf{u}_{f f}
$$

Learning curves

Reorstrd

'trials'

Buchli - OLCAR - 2015-LI

Learning Complex Movement Skills

CLMC Lab

$$
\sum^{2} A R L
$$

High-dimensional tasks

'whole body' skills - high dimensions conflicting tasks (e.g. balance and reaching)

Reinforcement Learning of Full-body Humanoid Motor Skills

Freek Stulp, Jonas Buchli, Evangelos Theodorou, Stefan Schaal

$$
r_{t}^{C o P}=\frac{1}{N}\left|\mathbf{c}_{t}-\mathbf{c}^{\text {default }}\right|
$$

Buchli - OLCAR - 2015-LI

RL: unspecific feedback!

Buchli - OLCAR - 2015-LI

Discrete reward
 —— Demonstrated

Goal: Switch on light and use lowest amount of effort

Phantom manipulation task

The terminal cost $\phi_{t_{N}}$ is 0 if the switch was
flipped, or 500 if it was not.

Learning of force policies

Learning Force Control Policies for Compliant Manipulation

Mrinal Kalakrishnan*, Ludovic Righetti*, Peter Pastor*, and Stefan Schaal* ${ }^{*}$

Learning Force Control Policies for Compliant Manipulation

Mrinal Kalakrishnan*, Ludovic Righetti*, Peter Pastor*, and Stefan Schaal ${ }^{*} \dagger$

Learning Force Control Policies for Compliant Manipulation

Mrinal Kalakrishnan, Ludovic Righetti, Peter Pastor, Stefan Schaal

CLMC Lab, University of Southern California Www-clmc.usc.edu

Cost functions

Door:
cost function at time t is: $r_{t}=300 q_{\text {door }}+100 q_{\text {handle }}+$ $100 q_{\text {pos }}+10 q_{\text {orient }}+0.1 q_{\text {fmag }}+0.02 q_{\text {tmag }}+0.02 q_{\text {ttrack }}+$ $0.01 q_{\text {ftrack }}+0.0001 \boldsymbol{\theta}^{\mathrm{T}} \mathbf{R} \boldsymbol{\theta}$, where $q_{\text {door }}$ and $q_{\text {handle }}$ are the squared tracking errors of the door and handle angles respectively, $q_{\text {pos }}$ and $q_{\text {orient }}$ are the squared tracking errors of the position and orientation of the hand, $q_{f m a g}$ and $q_{t m a g}$ are the squared magnitudes of the desired forces and torques, $q_{\text {ftrack }}$ and $q_{\text {ttrack }}$ are the squared force and torque tracking errors, and $\boldsymbol{\theta}^{\mathrm{T}} \mathbf{R} \boldsymbol{\theta}$ is the control cost.
into 100 time-steps. The immediate cost function at time t is: $r_{t}=100 q_{\text {pen }}+1.0 q_{\text {ftrack }}+0.5 q_{\text {fingertrack }}+0.1 q_{\text {fmag }}+$ $0.0001 \boldsymbol{\theta}^{\mathrm{T}} \mathbf{R} \boldsymbol{\theta}$, where $q_{\text {pen }}$ is an indicator cost which is 1 if the pen has slipped out of the hand (as described above), $q_{\text {ftrack }}$ is the squared force tracking error, $q_{\text {fingertrack }}$ is the squared finger position tracking error, $q_{f m a g}$ is the squared force magnitude, and $\boldsymbol{\theta}^{\mathrm{T}} \mathbf{R} \boldsymbol{\theta}$ is the control cost. After 90 trials, we

Principle of optimality

Traveling Salesman

II nodes
16 edges

EMH zürich

$$
V(n)=\sum_{i=0}^{n} e(i)
$$

Accumulated path cost at each node

${ }^{A} 0$

forward decision tree

Forward tree

10 paths
28 nodes
27 edges
Buchli - OLCAR - 2015-LI
$\mathbf{E T H}_{\text {zuinch }}$

Select optimal path?

 'map with shortest possible distance driven thus far'need to look all the way to the end to find optimal path, AD R L local info (edge or next node is not informative)

Select optimal path?
 = control

need to look all the way to the end to find optimal path, local info (edge or next node is not telling)

Backward tree

$$
V(n)=\sum_{i=N}^{n} e(i)
$$

Backward tree

10 paths
號
30 nodes
29 edges
Buchli - OLCAR - 2015-LI
$\boldsymbol{E H H}_{\text {ziwh }}$

Map of shortest achievable distance

'How long is the shortest path from here to goal if following the

EMHzürich

Map of shortest achievable distance

'How long is the shortest path from here if following the optimal route?'
'How valuable is a position?' 'What cost can I expect?'

Principle of optimality

If a path $A B C D E$ is optimal,

 then all parts of this path starting at intermediate position and ending at E (BCDE, CDE,DE) are optimal.Finding optimal path/control as recursive problem or backwards search

THM

\star Value function is very useful to find decision/control
\star Value function is found by backward sweep (from goal to start)

