Optimal and Learning Control for Autonomous Robots Lecture 13

Jonas Buchli
Agile \& Dexterous Robotics Lab

Class logistics

Exercise 3 Due:Tue. May 26 - midnight

Interviews:Thu/Fri. May 28/29
https://ethz.doodle.com/bsi7gvkycvrmht6t

LI3

Review on: Gradient descent methods

E\#H zürich

Analytical optimum Minima (and maxima) of functions

$$
\text { n-dimensional: } \quad C=f\left(x_{1}, \ldots, x_{n}\right)
$$

Minimum is an 'inflection point'

Gradient descent

- Start from initial x_{0}
- Loop until convergence
${ }^{-x_{m+1}=x_{m}-\alpha_{m}\left[\frac{\partial C(x)}{\partial x}\right]_{x_{m}}}$

Idea: Go to the direction where C decreases, negative direction of gradient vector

ADRL

Optimal Control problem with parameterized policy

What if instead of finding the optimal control input (which is a function) we find an approximation of that (function approximation)

$$
\begin{array}{ll}
J_{\cos t}=\Phi\left(t_{f}\right)+\int_{0}^{t_{f}} L\left(x_{t}, u_{t}\right) \mathrm{d} t & J_{\cos t}=\Phi\left(x_{t_{f}}\right)+\sum_{k=t_{0}}^{t_{f}} L\left(x_{k}, u_{k}\right) \\
\text { s.t. } \quad \dot{x}=f(x, u) & \text { s.t. } \quad x_{n+1}=f\left(x_{n}, u_{n}\right) \\
& u(n, x, \theta) \\
& \theta=\left[\theta_{1}, \ldots, \theta_{p}\right]^{T} \quad p \ll \frac{t_{f}}{\Delta t}
\end{array}
$$

EMHzürich

Policy Parameterization

Optimal Control problem:

$$
J=\phi\left[\mathbf{x}\left(t_{f}\right), t_{f}\right]+\int_{t_{0}}^{t_{f}} \mathscr{L}[\mathbf{x}(t), \mathbf{u}(t), t] d t
$$

w.r.t

$$
\dot{\mathbf{x}}(t)=\mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), t], \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}
$$

Parameterize the control

$$
\begin{aligned}
& \mathbf{u}(t)=\mathbf{u}(\mathbf{k}, t), \quad t_{0} \leq t \leq t_{f} \\
& \mathbf{u}(\mathbf{k}, t)=\mathbf{k}_{1}+\mathbf{k}_{2} t+\mathbf{k}_{3} t^{2}+\cdots \\
& \mathbf{u}(\mathbf{k}, t)=\sum_{i=1}^{N}\left[\mathbf{k}_{1 i} \sin \frac{i \pi t}{\left(t_{f}-t_{0}\right)}+\mathbf{k}_{2 \mathrm{i}} \cos \frac{i \pi t}{\left(t_{f}-t_{0}\right)}\right]
\end{aligned}
$$

A D R L

Example: Cart on a track

$\frac{\partial J}{\partial k_{1}}=k_{1}(500 q+2 r)+k_{2}(166.7 q+10 r)-1000 q$
$\frac{\partial J}{\partial k_{2}}=k_{1}(1666.7 q+10 r)+k_{2}(5555.6 q+66.7 r)-3333.3 q$

$$
\mathbf{k}=\mathbf{A}^{-1} \mathbf{B} q
$$

Analytical gradient descent

$$
\begin{aligned}
& J_{\text {reward }}=\sum_{k=0}^{H} \gamma^{k} r\left(x_{k}, u_{k}\right) \\
& \text { s.t. } \quad x_{n+1}=f\left(x_{n}, u_{n}\right)
\end{aligned}
$$

Policy parameterization
 $$
u_{n}=u(n, \mathrm{x} ; \theta)
$$

Solve the system dynamics analytically

$$
\begin{aligned}
& x_{n+1}=f\left(x_{n}, u_{n}\right) \\
& u_{n}=u(n, x ; \theta)
\end{aligned}
$$

$J_{\text {reward }}(\theta)$

Simple gradient descent

Algorithm 11 Gradient Descent Algorithm
 given

A method to compute $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$ for all $\boldsymbol{\theta}$
An initial value for the parameter vector: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}_{0}$
repeat
Compute the cost function gradient at $\boldsymbol{\theta}$

$$
\mathbf{g}=\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
$$

Update the parameter vector

$$
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\omega \mathbf{g}
$$

until convergence

$$
\begin{align*}
& x_{n+1}=f\left(x_{n}, u_{n}\right) \\
& u_{n}=u(n, x ; \theta)
\end{align*}
$$

$J_{\text {reward }}$

A D R L

Why analytic GD might not be feasible...

- For a general nonlinear system it is not possible

$$
\begin{aligned}
& x_{n+1}=f\left(x_{n}, u_{n}\right) \\
& u_{n}=u(n, x ; \theta)
\end{aligned}
$$

Black box/Model free gradient descent

What if I have no model? I.e. $C=f(x)$ is not known.

$$
\text { Estimate the gradient } \quad g=\left[\nabla J_{\text {renerd }}(\theta)\right]_{g_{m}}
$$

Use the environment as 'model': probe, and update based on experience

Estimation of gradient

$$
\frac{d J(\theta)}{d \theta}=\lim _{d \theta \rightarrow 0} \frac{J(\theta+d \theta)-J(\theta)}{d \theta} \quad \text { OR } \quad \frac{d J(\theta)}{d \theta}=\lim _{d \theta \rightarrow 0} \frac{J(\theta+d \theta / 2)-J(\theta-d \theta / 2)}{d \theta}
$$

$$
\frac{d J(\theta)}{d \theta} \approx \frac{J(\theta+\Delta \theta)-J(\theta)}{\Delta \theta}
$$

one-sided estimate

$$
\frac{d J(\theta)}{d \theta} \approx \frac{J(\theta+\Delta \theta / 2)-J(\theta-\Delta \theta / 2)}{\Delta \theta} \quad \begin{gathered}
\text { two-sided } \\
\text { estimate }
\end{gathered}
$$

$$
\nabla J\left(\theta_{1}, \theta_{2}, \ldots, \theta_{p}\right)=\left[\frac{\partial J}{\partial \theta_{1}}, \frac{\partial J}{\partial \theta_{2}}, \ldots, \frac{\partial J}{\partial \theta_{p}}\right]
$$

Leads to Finite Difference Method

Example

Thus need three samples of the cost:
(e.g. measurement at point of interest, and two one-sided estimates)

$$
J(\boldsymbol{\theta}), J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{1}\right), J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{2}\right)
$$

$\frac{d J(\theta)}{d \theta} \approx \frac{J(\theta+\Delta \theta)-J(\theta)}{\Delta \theta}$
$\nabla J\left(\theta_{1}, \theta_{2}, \ldots, \theta_{p}\right)=\left[\frac{\partial J}{\partial \theta_{1}}, \frac{\partial J}{\partial \theta_{2}}, \ldots, \frac{\partial J}{\partial \theta_{p}}\right]$

$$
\begin{aligned}
& J\left(\boldsymbol{\theta}+\Delta \theta_{1}\right) \approx J(\boldsymbol{\theta})+\Delta \boldsymbol{\theta}_{1}^{T} \nabla J(\boldsymbol{\theta}) \\
& J\left(\boldsymbol{\theta}+\Delta \theta_{2}\right) \approx J(\boldsymbol{\theta})+\Delta \boldsymbol{\theta}_{2}^{T} \nabla J(\boldsymbol{\theta})
\end{aligned}
$$

$$
\begin{aligned}
& J\left(\boldsymbol{\theta}+\Delta \theta_{1}\right) \approx J(\boldsymbol{\theta})+\Delta \boldsymbol{\theta}_{1}^{T} \nabla J(\boldsymbol{\theta}) \\
& J\left(\boldsymbol{\theta}+\Delta \theta_{2}\right) \approx J(\boldsymbol{\theta})+\Delta \boldsymbol{\theta}_{2}^{T} \nabla J(\boldsymbol{\theta}) \\
& {\left[\begin{array}{c}
\Delta \boldsymbol{\theta}_{1}^{T} \\
\Delta \boldsymbol{\theta}_{2}^{T}
\end{array}\right] \nabla J(\boldsymbol{\theta})=\left[\begin{array}{l}
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{1}\right)-J(\boldsymbol{\theta}) \\
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{2}\right)-J(\boldsymbol{\theta})
\end{array}\right]}
\end{aligned}
$$

if perturbations not parallel $\left[\begin{array}{c}\Delta \theta_{1}^{T} \\ \Delta \theta_{2}^{T}\end{array}\right]$ is a 2 -by-2 invertible matrix

$$
\nabla J(\boldsymbol{\theta})=\left[\begin{array}{l}
\Delta \boldsymbol{\theta}_{1}^{T} \\
\Delta \boldsymbol{\theta}_{2}^{T}
\end{array}\right]^{-1}\left[\begin{array}{l}
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{1}\right)-J(\boldsymbol{\theta}) \\
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{2}\right)-J(\boldsymbol{\theta})
\end{array}\right]
$$

ETHzürich

Example 2

Three one sided perturbations

$$
\begin{array}{r}
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{1}\right), J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{2}\right), J\left(\boldsymbol{\theta}+\boldsymbol{\theta}_{3}\right) \\
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{1}\right)=J(\boldsymbol{\theta})+\Delta \boldsymbol{\theta}_{1}^{T} \nabla J(\boldsymbol{\theta}) \\
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{2}\right)=J(\boldsymbol{\theta})+\Delta \boldsymbol{\theta}_{2}^{T} \nabla J(\boldsymbol{\theta}) \\
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{3}\right)=J(\boldsymbol{\theta})+\Delta \boldsymbol{\theta}_{3}^{T} \nabla J(\boldsymbol{\theta})
\end{array}
$$

unknown $J(\boldsymbol{\theta})$ and $\nabla J(\boldsymbol{\theta})$

$$
\begin{aligned}
& J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{1}\right)=J(\boldsymbol{\theta})+\Delta \boldsymbol{\theta}_{1}^{T} \nabla J(\boldsymbol{\theta}) \\
& J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{2}\right)=J(\boldsymbol{\theta})+\Delta \boldsymbol{\theta}_{2}^{T} \nabla J(\boldsymbol{\theta}) \\
& J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{3}\right)=J(\boldsymbol{\theta})+\Delta \boldsymbol{\theta}_{3}^{T} \nabla J(\boldsymbol{\theta})
\end{aligned}
$$

in matrix from

$$
\left[\begin{array}{cc}
\Delta \boldsymbol{\theta}_{1}^{T} & 1 \\
\Delta \boldsymbol{\theta}_{2}^{T} & 1 \\
\Delta \boldsymbol{\theta}_{3}^{T} & 1
\end{array}\right] \underset{\text { unknown }}{\left[\begin{array}{c}
\nabla J(\boldsymbol{\theta}) \\
J(\boldsymbol{\theta})
\end{array}\right]=\left[\begin{array}{c}
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{1}\right) \\
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{2}\right) \\
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{3}\right)
\end{array}\right]}
$$

if perturbations pair-wise independent, invertible:

$$
\left[\begin{array}{c}
\nabla J(\boldsymbol{\theta}) \\
J(\boldsymbol{\theta})
\end{array}\right]=\left[\begin{array}{ll}
\Delta \boldsymbol{\theta}_{1}^{T} & 1 \\
\Delta \boldsymbol{\theta}_{2}^{T} & 1 \\
\Delta \boldsymbol{\theta}_{3}^{T} & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{1}\right) \\
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{2}\right) \\
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{3}\right)
\end{array}\right]
$$

General FD

General case for $\mathrm{p}+\mathrm{I}$ samples:

$$
\begin{aligned}
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{1}\right)=J(\boldsymbol{\theta})+\Delta \boldsymbol{\theta}_{1}^{T} \nabla J(\boldsymbol{\theta}) \\
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{2}\right)=J(\boldsymbol{\theta})+\Delta \boldsymbol{\theta}_{2}^{T} \nabla J(\boldsymbol{\theta}) \\
\vdots \\
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{p}\right)=J(\boldsymbol{\theta})+\Delta \boldsymbol{\theta}_{p}^{T} \nabla J(\boldsymbol{\theta}) \\
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{p+1}\right)=J(\boldsymbol{\theta})+\Delta \boldsymbol{\theta}_{p+1}^{T} \nabla J(\boldsymbol{\theta})
\end{aligned} \quad \Longrightarrow \underbrace{\left[\begin{array}{c}
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{1}\right) \\
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{2}\right) \\
\vdots \\
J\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{p+1}\right)
\end{array}\right]}_{\mathbf{J}}=\underbrace{\left[\begin{array}{cc}
\Delta \boldsymbol{\theta}_{1}^{T} & 1 \\
\Delta \boldsymbol{\theta}_{2}^{T} & 1 \\
\vdots \\
\Delta \boldsymbol{\theta}_{p+1}^{T} & 1
\end{array}\right]}_{\Delta \boldsymbol{\Theta}}\left[\begin{array}{c}
\nabla J(\boldsymbol{\theta}) \\
J(\boldsymbol{\theta})
\end{array}\right]
$$

Stochastic Case

Stochastic problems

Noisy cost function

What about gradient now?

Stochastic FD

Return for a single rollout

$$
R=\Phi(\mathbf{x}(N))+\sum_{k=0}^{N-1} L_{k}(\mathbf{x}(k), \mathbf{u}(k))
$$

Cost is expected return

$$
J=E[R]
$$

Approximate return by averaging (K rollouts)
need $K \times(p+1)$ evaluations of the cost function

Expected gradient

need $K \times(p+1)$ evaluations of the cost function

$$
\left[\begin{array}{c}
\nabla J(\boldsymbol{\theta}) \\
J(\boldsymbol{\theta})
\end{array}\right]=\Delta \boldsymbol{\Theta}^{-1} \mathbf{J}
$$

Instead of doing many

$N \leq K \times(p+1)$

(similar) perturbations

$$
\underbrace{\left[\begin{array}{c}
R\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{1}\right) \\
R\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{2}\right) \\
\vdots \\
R\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{N}\right)
\end{array}\right]}_{\mathbf{R}}=\underbrace{\left[\begin{array}{cc}
\Delta \boldsymbol{\theta}_{1}^{T} & 1 \\
\Delta \boldsymbol{\theta}_{2}^{T} & 1 \\
\vdots & \\
\Delta \boldsymbol{\theta}_{N}^{T} & 1
\end{array}\right]}_{\Delta \boldsymbol{\Theta}}\left[\begin{array}{c}
\nabla J(\boldsymbol{\theta}) \\
J(\boldsymbol{\theta})
\end{array}\right]
$$

$\Delta \boldsymbol{\Theta}$ is $\quad N \times(p+1)$
If $N \geq p+1$
$\Delta \boldsymbol{\Theta} \operatorname{rank} p+1$
use left pseudoinverse
$\left[\begin{array}{c}\nabla J(\boldsymbol{\theta}) \\ J(\boldsymbol{\theta})\end{array}\right]=\Delta \boldsymbol{\Theta}^{\dagger} \mathbf{R}=\left(\Delta \boldsymbol{\Theta}^{T} \Delta \boldsymbol{\Theta}\right)^{-1} \Delta \boldsymbol{\Theta}^{T} \mathbf{R}$

Finite difference - general

$$
\left[\begin{array}{c}
\nabla J(\boldsymbol{\theta}) \\
J(\boldsymbol{\theta})
\end{array}\right]=\Delta \boldsymbol{\Theta}^{\dagger} \mathbf{R}=\left(\Delta \boldsymbol{\Theta}^{T} \Delta \boldsymbol{\Theta}+\lambda \mathbf{I}\right)^{-1} \Delta \boldsymbol{\Theta}^{T} \mathbf{R}
$$


```
Algorithm 12 Gradient Descend Algorithm with Finite Difference Method
    given
        The cost function:
            \(J=E\left[\Phi(\mathbf{x}(N))+\sum_{k=0}^{N-1} L_{k}(\mathbf{x}(k), \mathbf{u}(k))\right]\)
        A policy (function approximation) for the control input: \(\mathbf{u}(n, \mathbf{x})=\mu(n, \mathbf{x} ; \boldsymbol{\theta})\)
        An initial value for the parameter vector: \(\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}_{0}\)
        The parameter exploration standard deviation: \(c\)
        The regularization coefficient: \(\lambda\)
        The learning rate: \(\omega\)
    repeat
            Create \(N\) rollouts of the system with the perturbed parameters \(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}, \Delta \boldsymbol{\theta} \sim \mathcal{N}\left(\mathbf{0}, c^{2} \mathbf{I}\right)\)
            Calculate the return from the initial time and state for the \(n\)th rollout:
\[
R\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{n}\right)=\Phi(\mathbf{x}(N))+\sum_{k=0}^{N-1} L_{k}(\mathbf{x}(k), \mathbf{u}(k))
\]
Construct \(\mathbf{R}\) and \(\Theta\) matrices as:
\[
\mathbf{R}_{N \times 1}=\left[R\left(\boldsymbol{\theta}+\Delta \boldsymbol{\theta}_{n}\right)\right]_{n}, \boldsymbol{\Theta}_{N \times(p+1)}=\left[\Delta \boldsymbol{\theta}_{n}^{T} 1\right]_{n}
\]
Calculate the value and gradient of the cost function at \(\boldsymbol{\theta}\)
\[
\left[\begin{array}{c}
\nabla J(\boldsymbol{\theta}) \\
J(\boldsymbol{\theta})
\end{array}\right]=\left(\Delta \boldsymbol{\Theta}^{T} \Delta \boldsymbol{\Theta}+\lambda \mathbf{I}\right)^{-1} \Delta \boldsymbol{\Theta}^{T} \mathbf{R}
\]
Update the parameter vector:
\[
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\omega \nabla J(\boldsymbol{\theta})
\]
until convergence
```


Learning Rate

\&

Stability of gradient descent

Stability of maps

$$
x_{m+1}=x_{m}-\gamma_{m}\left[\frac{\partial C(x)}{\partial x}\right]_{x_{m}} \leftrightarrow x_{m+1}=T\left(\mathrm{x}_{m}\right)
$$

Small perturbation should be damped out

$$
\begin{aligned}
& x_{m}^{\prime}=\mathrm{x}_{m}+\Delta \mathrm{x}_{m} \\
& x_{m+1}^{\prime}=\mathrm{x}_{m+1}+\Delta \mathrm{x}_{m+1} \\
& \Delta \mathrm{x}_{m+1}=\left[\frac{d T}{d \mathrm{x}}\right]_{\mathrm{x}_{m}} \Delta \mathrm{x}_{m}
\end{aligned}
$$

Taylor first order approximation

Numerical examples

$1>(1-2 \gamma)>-1 \Rightarrow \gamma \in(0,1)$

ADRL

Stability of gradient descent

Basic stability:

2-nd derivative tells about stability,
for n-DOF: Hessian
Step size:

$\boldsymbol{E T H}_{\text {zürich }}$

Exploitation vs. Exploration

Choice of learning rate parameter vs. local minima, convergence speed

Solution is often adaptive learning rate, but...

- freezing to quickly, get stuck in local minimum
- freezing too slowly, slow convergence, wild oscillations in solutions

Newton Method

- Faster convergence
- Less sensitivity to the learning rate

$$
x_{m+1}=x_{m}-\gamma_{m}\left(H_{c}\left(x_{m}\right)\right)^{-1} \nabla C\left(x_{m}\right)
$$

$$
\begin{aligned}
& \nabla C(x)=\frac{\partial C}{\partial x} \\
& H_{c}(x)=\frac{\partial^{2} C}{\partial x^{2}}
\end{aligned}
$$

A real implementation on a

 robot

Watch on YouTube "Robot Learning to Walk (Toddler)" https://www.youtube.com/watch?v=goqWX7bC-ZY ARD

E\#H zürich

Locomotion Skills for Simulated Quadrupeds

Stelian Coros ${ }^{1,2}$ Andrej Karpathy ${ }^{1}$ Ben Jones ${ }^{1}$

Lionel Reveret ${ }^{3} \quad$ Michiel van de Panne ${ }^{1}$
${ }^{1}$ University of British Columbia ${ }^{2}$ Disney Research Zurich
${ }^{3}$ INRIA, Grenoble University, CNRS
$\sum_{i}^{2} A D R L$

Flexible Muscle-Based Locomotion for Bipedal Creatures

SIGGRAPH ASIA 2013

Thomas Geijtenbeek
Michiel van de Panne
Frank van der Stappen

Problems of FD

- Multiple minima
- Non-smooth cost functions
- performance
- robustness
- step size - exploration vs. exploitation
- noise
- at min. gradient $=0$
- when converged?
- Lots of algorithmic parameters
- One update might be computationally intensive

