Optimal and Learning Control for Autonomous Robots Lecture 10

Jonas Buchli
Agile \& Dexterous Robotics Lab

Class logistics

Have you signed up for the Interview for Ex 2?

http://doodle.com/w2ahzwpdrwa5p5a9 (using your group ID!)

Lecture 10 Goals

\star Function approximation, basis functions \star Path integral stochastic optimal control \star Path integral RL

(Back to) Continuous state action spaces

Function approximation

Mountain Car Problem
 A continuous-state problem

MOUNTAIN CAR Goal Reward
 -Goal: + 10
 -Step: - I

Solving Mountain Car

Practically continuous problems are (almost?)

 always solved by some sort of discretization!!!Let's look at the problem of discretization in a bit more detail!

Control Policies

state - action mapping

s
Problem: dimensions!

Buchli - OLCAR - 2015

Value discretization

SA-Value

却
Actions

Buchli - OLCAR - 2015
EMH zürich

Action discretization

Grid

Policy
ADRL

Discretization of large/

high-dim. state spaces

[Bishop]

cf. Discussion on exploration

Examples

High dimensional continuous state actions

 spaces with stochastic dynamics
Optimal(?) control in fluids

Approach: Computational Fluid dynamics \& Evolutionary Algorithm

Stefan Kern and Petros Koumoutsakos ETH Zurich

Kristina Eschler

 hgk ZurichEidgenössische Technische Hochschule Zürich 5 wiss Federal Institute of Technology Zurich

Reinforcement

Learning: real-worldsampling based optimal control

Why do high dimensional systems appear 'repeatable/low-dimensional to us?

Discretization issues

- Inflexible (need to decide division ahead of time)
- Inefficient (e.g. if slow varying function but division was decided to be fine)
- or not precise enough... if tiling is too coarse

Is there a way to avoid the issues of tiling and get a handle on the complexity?

Ideally: parameter(s) controlling complexity (in this class)

even more ideal: complexity adjusted automatically (not addressed in this class)

Function approximation

Goal: approximate a given
(arbitrary) function

Need:
'Basis functions' Parameters

Function approximation

Function approximation

Function approximation: $f(x, \theta) \approx y(x)$

does not work, no finite
minimum minimum

$$
\min (f(x)-y(x))\{\forall x\}
$$

inner product

Euclidian Norm

$$
\|x\|:=\sqrt{x \cdot x} .
$$

$$
\|\boldsymbol{x}\|:=\frac{\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}}{\text { only defined on Euclidean spaces }}
$$

p-Norm

$$
\|\mathbf{x}\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

I-Norm

$$
\|\boldsymbol{x}\|_{1}:=\sum_{i=1}^{n}\left|x_{i}\right|
$$

max-Norm

$$
\underbrace{}_{\text {Buchi - OLCAR - } 2015}
$$

$$
\begin{aligned}
& \|x\|_{1}=\sum_{i=1}^{m}\left|x_{i}\right| \\
& \|x\|_{2}=\left(\sum_{i=1}^{m}\left|x_{i}\right|^{2}\right)^{1 / 2}=\sqrt{x^{*} x} \\
& \|x\|_{\infty}=\max _{1 \leq i \leq m}\left|x_{i}\right|, \\
& \|x\|_{p}=\left(\sum_{i=1}^{m}\left|x_{i}\right|^{p}\right)^{1 / p} \quad(1 \leq p<\infty) .
\end{aligned}
$$

(-s)

$$
\begin{array}{|l|l|}
\hline & \\
\hline & \\
& \\
\hline
\end{array}
$$

$$
\|\mathbf{x}\|_{p}=\left(x_{1}^{p}+\ldots+x_{n}^{p}\right)^{\frac{1}{p}}
$$

$\sum^{2} A D R L$

inner product

Euclidian Norm

$$
\|x\|:=\sqrt{\mathscr{x} \cdot \boldsymbol{x}} .
$$

$$
\|\boldsymbol{x}\|:=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}} \quad \mathbb{R}^{n}
$$ only defined on Euclidean spaces

p-Norm

$$
\|\mathbf{x}\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

I-Norm

$$
\|\boldsymbol{x}\|_{1}:=\sum_{i=1}^{n}\left|x_{i}\right|
$$

max-Norm

$$
\underbrace{}_{\text {Buchi-OLCAR-2015 }}
$$

Example:

$$
\begin{gathered}
x=\left[\begin{array}{c}
p \\
\alpha
\end{array}\right] \\
{[\mathbf{x}]=\left[\begin{array}{c}
m \\
r a d
\end{array}\right]} \\
{\left[m^{2}\right]+\left[\mathrm{rad}^{2}\right]}
\end{gathered}
$$

no 'natural' definition of distance

Weighted p-norms

Weighted Euclidean

$$
\|x\|_{W}=\|W x\|
$$

W: diagonal weighting matrix

$$
\|x\|_{W}=\left(\sum_{i=1}^{m}\left|w_{i} x_{i}\right|^{2}\right)^{1 / 2}
$$

Function approximation as optimization

e.g. linear regression:
opt. in least squares sense...
Cost function $=$ error function
Look at the gradient, set it to 0

This is key for lots of learning methods

Least squares

 linear regressionInput variables: $\quad \mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]$
Observations: $\quad t$ with gaussian noise: $\quad t=y+\epsilon$
Parameters: $\quad \mathbf{b}=\left[b_{1}, \ldots, b_{n}\right]$
Linear model $\quad y=\mathbf{b x}^{\mathbf{T}}$
Find b such that $\min \| y-t| |$
p observations:

$$
\min \left\|\mathbf{X b}^{\mathbf{T}}-\mathbf{t}\right\|
$$

at input:
$\mathbf{X}=\left[\begin{array}{c}{\left[x_{1}, \ldots, x_{n}\right]_{1}} \\ \ldots \\ {\left[x_{1}, \ldots, x_{n}\right]_{p}}\end{array}\right]$

Solving for LS fit

$$
\min \left\|\mathbf{X} \mathbf{b}^{\mathbf{T}}-\mathbf{t}\right\| \Leftrightarrow \min \left[\left(\mathbf{X} \mathbf{b}^{\mathbf{T}}-\mathbf{t}\right)^{T}\left(\mathbf{X} \mathbf{b}^{\mathbf{T}}-\mathbf{t}\right)\right] \begin{gathered}
\text { 'quadratic form' } \\
\text { ('distance') }
\end{gathered}
$$

$$
E=\left(\mathbf{X} \mathbf{b}^{\mathbf{T}}-\mathbf{t}\right)^{T}\left(\mathbf{X b}^{\mathbf{T}}-\mathbf{t}\right)
$$

$$
\min E \Leftrightarrow \nabla E=0
$$

$$
\nabla E=2 \mathbf{X}^{\mathbf{T}}\left(\mathbf{X b}^{\mathbf{T}}-\mathbf{t}\right)
$$

$\left(\mathbf{X}^{\mathbf{T}} \mathbf{X}\right)^{n \times n}$

$$
\mathbf{b}^{\mathbf{T}}=\left(\mathbf{X}^{\mathbf{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathbf{T}} \mathbf{t}
$$

Pseudoinverse!

know how to fit this

but what about this?

$\mathbf{E T H}_{\text {zuinch }}$

Fit with linear model?

[Le Boudec, Performance evaluation, EPFL]

Function approximation using basis functions

Basis
functions

$$
\mathbf{u}(\mathbf{t})=\phi(\mathbf{t})^{\mathrm{T}} \theta
$$

Parameters

Torques
Current ref. position 'Heading'

Learned
'inner product'

$$
u(t)=\boldsymbol{\phi}(\mathbf{t})^{\mathbf{T}} \underset{u(t)=\boldsymbol{\theta}^{\mathbf{T}} \boldsymbol{\phi}(\mathbf{t})}{\boldsymbol{\theta}}
$$

Let's look at this expression in more detail

$$
\begin{gathered}
\boldsymbol{\phi}(\mathbf{t})=\left[\begin{array}{c}
\phi_{0}(t) \\
\cdot \\
\cdot \\
\cdot \\
\phi_{n}(t)
\end{array}\right] \quad \boldsymbol{\theta}=\left[\begin{array}{c}
\theta_{0} \\
\cdot \\
\cdot \\
\dot{\theta}_{n}
\end{array}\right] \quad \boldsymbol{\theta}=\left[\theta_{0}, \ldots, \theta_{n}\right]^{T} \\
u(t)=\theta_{0} \phi_{0}(t)+\ldots+\theta_{n} \phi_{n}(t)
\end{gathered}
$$

Example: $a x+b$

$$
\begin{gathered}
y=a x+b \\
\boldsymbol{\theta}=\left[\begin{array}{ll}
a & b
\end{array}\right]^{T} \\
\phi(\mathbf{x})=\left[\begin{array}{l}
x \\
1
\end{array}\right]
\end{gathered}
$$

Example: ax+b

\% how many observations p = 10;
$\mathrm{x}=\operatorname{rand}(\mathrm{p}, \mathrm{l})$;
$\mathrm{bl}=\mathrm{rand}$
b2 = rand
eps $=0.1 * \operatorname{randn}(p, 1)$;
$\mathrm{t}=\mathrm{b} 2 * \mathrm{x}+\mathrm{bl}+\mathrm{eps} ;$
xl = [x,ones(p,l)];
b_est $=\operatorname{pinv}(x l) * t$
h = plot(x,t,'o',x,t-eps,x,b_est'*xl');

ADRL TryP=100

$$
\operatorname{Try} p=10
$$

Basis functions

Goal: function approximation of arbitrary functions Wanted: 'Good’ function approximator Good: easy to find parameters, expressive, ...

$$
f(x)=\sum_{i} w_{i} \Psi_{i}(x)
$$

Idea: push nonlinearity into the basis functions, independent of parameters Linear in parameters!!!!!

Fourier basis

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n x)+b_{n} \sin (n x)\right]
$$

Problem: infinite validity, need infinitely many basis functions to approximate a non-periodic function

Gaussian basis

Idea: push nonlinearity into the basis functions basis: more localized than sines

$$
f(x)=\sum_{i} w_{i} \Psi_{i}(x)
$$

Polynomial basis

$$
\begin{gathered}
f(x, \theta)=\theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\ldots \\
f(x, \theta)=\sum_{n=0}^{\infty} \theta_{n} x^{n}
\end{gathered}
$$

Other bases

- Index functions

$$
f(x, \theta)=\sum_{n=0}^{\infty} \theta_{n} b_{n}(x)
$$

$$
b(x)=1 \forall x \in[a, b], \quad 0 \text { otherwise }
$$

- Index functions multiplied with other functions
(e.g. local linear models)

$$
\begin{aligned}
& b(x)=g(x) \forall x \in[a, b], \quad 0 \text { otherwise } \\
& b(x)=x \forall x \in[a, b], \quad 0 \text { otherwise }
\end{aligned}
$$

(-Wavelets: lots of different bases

Basis functions can be defined on \mathbb{C}共 $D R L$

The function basis zoo

All bases are equal, but some bases are more equal than others!

Fit nonlinear functions

Linear model: $\quad y(\mathbf{x}, \mathbf{w})=\sum_{j=0}^{M-1} w_{j} \phi_{j}(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$
Gaussian basis function: $\quad \phi_{j}(x)=\exp \left\{-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}\right\}$
Observation: $t=y(\mathbf{x}, \mathbf{w})+\epsilon$
Max. likelihood treatment leads to:

$$
\left.\begin{array}{c}
p(t \mid \mathbf{x}, \mathbf{w}, \beta)=\mathcal{N}\left(t \mid y(\mathbf{x}, \mathbf{w}), \beta^{-1}\right) \\
\text { precision (inv. variance) } \beta
\end{array}\right)
$$

$$
\begin{array}{rlr}
\ln p(\mathbf{t} \mid \mathbf{w}, \beta) & =\sum_{n=1}^{N} \ln \mathcal{N}\left(t_{n} \mid \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right), \beta^{-1}\right) \\
& =\frac{N}{2} \ln \beta-\frac{N}{2} \ln (2 \pi)-\beta E_{D}(\mathbf{w}) & E_{D}(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2}
\end{array}
$$

NADR Gradient: $\quad \nabla \ln p\left(|\mid \mathbf{w}, \beta)=\sum\left\{t_{n}-\mathbf{w}^{\mathrm{T}} \phi\left(\mathbf{x}_{n}\right)\right\} \phi\left(\mathbf{x}_{n}\right)^{\mathrm{T}}\right.$
今ПH zürich

Gradient:

$$
\nabla \ln p(\mathbf{t} \mid \mathbf{w}, \beta)=\sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)^{\mathrm{T}}
$$

Gradient $=0 \quad 0=\sum_{n=1}^{N} t_{n} \phi\left(\mathbf{x}_{n}\right)^{\mathrm{T}}-\mathbf{w}^{\mathrm{T}}\left(\sum_{n=1}^{N} \phi\left(\mathbf{x}_{n}\right) \phi\left(\mathbf{x}_{n}\right)^{\mathrm{T}}\right)$.

$$
\mathbf{w}_{\mathrm{ML}}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}
$$

$\boldsymbol{\Phi}^{\dagger} \equiv\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \quad$ Pseudoinverse!

$$
\boldsymbol{\Phi}=\left(\begin{array}{cccc}
\phi_{0}\left(\mathbf{x}_{1}\right) & \phi_{1}\left(\mathbf{x}_{1}\right) & \cdots & \phi_{M-1}\left(\mathbf{x}_{1}\right) \\
\phi_{0}\left(\mathbf{x}_{2}\right) & \phi_{1}\left(\mathbf{x}_{2}\right) & \cdots & \phi_{M-1}\left(\mathbf{x}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{0}\left(\mathbf{x}_{N}\right) & \phi_{1}\left(\mathbf{x}_{N}\right) & \cdots & \phi_{M-1}\left(\mathbf{x}_{N}\right)
\end{array}\right)
$$

What happens if you have millions of datapoints/observations?
... or lots of dimensions in the problem?

$$
\begin{aligned}
& \mathbf{w}=\left(\boldsymbol{\Phi}^{\mathbf{T}} \boldsymbol{\Phi}\right)^{-\mathbf{1}} \boldsymbol{\Phi}^{\mathbf{T}} \mathbf{t} \\
& \boldsymbol{\Phi}^{\#}=\left(\boldsymbol{\Phi}^{\mathbf{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathbf{T}}
\end{aligned}
$$

\rightarrow use SVD (found iteratively)
dimensions?
square matrix MxM
(each entry N multiplications)
\rightarrow Iterative least squares
Matlab: svd

What basis function is used in Le Boudec's example?

$$
Y_{i}=\left(a+b x_{i}\right) 1_{x_{i} \leq \xi}+\left(c+d x_{i}\right) 1_{\left\{x_{i}>\xi\right\}}+\epsilon_{i}
$$

Nonlinear fitting

It's easy to fit a linear function
... or anything where the parameters show up linear!!!

Example: Sampling

Function approximation view of sampling

discretization is special case of function approximation
can make the same argument with dirac pulse sampling
remember: no overlap / no generalization

Function approximation as 'bridge' between continuous and discrete world

Can lower dimensionality of the problem (dimensionality becomes an open parameter!!!)

Tradeoff: high N, good approximation, optimal policy, curse of dimensionality

Approximate what?

Supervised learning:Target function known \rightarrow difference is cost

Reinforcement learning: Cost is sampled from examples But think of it this way:There is a 'target function', i.e. the optimal control/or value function and the approximator has to minimize the distance between the 'guess' and this function

- Direct policy learning (e.g. policy gradients)
- Value function approximation

ETHzürich

Some issues...

Extrapolation vs. Interpolation

Extrapolate?

Need a model... let's fit one...

Model choice, model bias and explanatory power of models

Anscombe's quartet

least squares very prone to outliers

Buchli - OLCAR - 2015
ᄃ■7Zürich

Overfitting

The approximator has to have enough expressive power to capture the essentials, ... but it should not try to over-interpret the data!

Buchli - OLCAR - 20I5

State vs time based policies

Policy:
function of states
function of time
$\Psi(x)$
$\Psi(t)$

Control Policies

Naive state - action mapping
a

Problem: dimensions:

Function approximation using basis functions

'classic RL' Sutton \& Barto

p 9 on efficiency of 'evolutionary' vs. direct value based methods
pl7 on how opt. control IS learning and emphasis on 'incremental'!

Parametrized Policy Learning (applied RL in Robotics in last $\sim 10 y)$
see Examples/Papers

Path integral RL

Goal: Solve continuos time stochastic optimal control problem by sampling

\Rightarrow First look at Path Integral Optimal Control

Reminder

Continuos time optimal control

Buchli - OLCAR - 2015
$\boldsymbol{E T H}_{\text {zuinch }}$

ontinuous time system

System dynamics

$$
\dot{\mathbf{x}}(t)=\mathbf{f}_{t}(\mathbf{x}(t), \mathbf{u}(t))
$$

Cost

$$
J=e^{-\beta\left(t_{f}-t_{0}\right)} \Phi\left(\mathbf{x}\left(t_{f}\right)\right)+\int_{t_{0}}^{t_{f}} e^{-\beta\left(t-t_{0}\right)} L(\mathbf{x}(t), \mathbf{u}(t)) d t
$$

$0 \leq \beta \quad$ discount / decay rate
ETHzürich

Continuous time optimal control problem

Find control $\underset{\text { control (input) }}{u^{*}(t)}=\mu^{*}(t, x(t))$ minimizing

$$
J=e^{-\beta\left(t_{f}-t_{0}\right)} \Phi\left(\mathbf{x}\left(t_{f}\right)\right)+\int_{t_{0}}^{t_{f}} e^{-\beta\left(t-t_{0}\right)} L(\mathbf{x}(t), \mathbf{u}(t)) d t
$$

Given constraints

$$
\dot{\mathbf{x}}(t)=\mathbf{f}_{t}(\mathbf{x}(t), \mathbf{u}(t))
$$

Goal: Optimal policy

$$
\mu^{*}=\arg \min _{u} J
$$

-H?amilton Jacobi Bellman

William Rowan Hamilton (I805-I865)

$$
\frac{\partial V^{*}}{\partial t}=\beta V^{*}-\min _{\mathbf{u} \in \mathbf{U}}\left\{L(\mathbf{x}, \mathbf{u})+\left(\frac{\partial V^{*}}{\partial \mathbf{x}}\right)^{T} \mathbf{f}(\mathbf{x}, \mathbf{u})\right\}
$$

$$
\beta V^{*} \frac{\partial V^{*}}{\partial t}=\min _{\mathbf{u} \in \mathbf{U}}\left\{L(\mathbf{x}, \mathbf{u})+\left(\frac{\partial V^{*}}{\partial \mathbf{x}}\right)^{T} \mathbf{f}(\mathbf{x}, \mathbf{u})\right\}
$$

In general: Nonlinear, Partial Differential Equation Has no analytical solution... : (

Backwards in time! $V^{*}\left(t_{f}, \mathbf{x}\right)=\Phi(\mathbf{x})$

Reminder
 Stochastic optimal control

EMH zürich

Stochastic system

$$
\dot{\mathbf{x}}(t)=\mathbf{f}_{t}(\mathbf{x}(t), \mathbf{u}(t))+\mathbf{B}(t) \mathbf{w}(t) \quad \mathbf{x}(0)=\mathbf{x}_{0}
$$

Mean: $\quad E[\mathbf{w}(t)]=\overline{\mathbf{w}}=0$
mean-free
Co-variance: $\quad E\left[\mathbf{w}(t) \mathbf{w}(\tau)^{T}\right]=\mathbf{W}(t) \delta(t-\tau) \quad$ uncorreated over time

$$
\begin{gathered}
E\left[\mathbf{w}(t) \mathbf{w}(\tau)^{T}\right]=0 \\
t \neq \tau
\end{gathered}
$$

Expected cost:

$$
J=E\left\{e^{-\beta\left(t_{f}-t_{0}\right)} \Phi\left(\mathbf{x}\left(t_{f}\right)\right)+\int_{t_{0}}^{t_{f}} e^{-\beta\left(t^{\prime}-t_{0}\right)} L\left(\mathbf{x}\left(t^{\prime}\right), \mathbf{u}\left(t^{\prime}\right)\right) d t^{\prime}\right\}
$$

$$
\begin{array}{|l:l}
\beta V^{*}(t, \mathbf{x})-V_{t}^{*}(t, \mathbf{x})=\min _{\mathbf{u}(t)}\left\{L(\mathbf{x}, \mathbf{u}(t))+V_{\mathbf{x}}^{* T} \mathbf{f}_{t}(\mathbf{x}, \mathbf{u}(t))^{1}+\frac{1}{2} \operatorname{Tr}\left[V_{\mathbf{x x}}^{*} \mathbf{B}(t) \mathbf{W}(t) \mathbf{B}^{T}(t)\right]\right\}
\end{array}
$$

Hamilton Jacobi Bellman Equation

$$
V^{*}\left(t_{f}, \mathbf{x}\right)=\Phi(\mathbf{x})
$$

Towards Path-integral

 SOCGoal: Solve continuos time stochastic optimal control problem by sampling
\star Can solve SOC with certain assumptions, eg. LQ.
\star Here a less stringent form of the dynamics (ctl. affine) and (almost) NO assumptions on cost

Why important?
Cost is key design 'handle' to tell the system what to do...

Control affine opt control problem

Note similarity to stoch. system (L3)

$$
\dot{\mathbf{x}}_{t}=\mathbf{f}\left(\mathbf{x}_{t}, t\right)+\mathbf{G}\left(\mathbf{x}_{t}\right) \mathbf{u}_{t}
$$

$$
\dot{\mathbf{x}}(t)=\mathbf{f}_{t}(\mathbf{x}(t), \mathbf{u}(t))+\mathbf{B}(t) \mathbf{w}(t)
$$

$V\left(\mathbf{x}_{0}\right)=\min _{\mathbf{u}_{t_{0}: t_{N}}} \mathbb{E}[R(\tau)]$
$R(\tau)=\phi\left(t_{N}\right)+\int_{t_{0}}^{t_{N}} r_{t} d t \quad r_{t}=q\left(\mathbf{x}_{t}\right)+\frac{1}{2} \mathbf{u}_{t}^{T} R \mathbf{u}_{t}$

$$
V\left(x_{t}\right)=\min _{u_{t}} E_{\tau}[R(\tau)]
$$

$\int p(\tau) R(\tau) d \tau \quad \int p(\tau)\left(\frac{1}{\lambda} \phi+\frac{1}{\lambda} \int r d t\right) d \tau$
Discretize and use EM-like idea: PoWER Problem: pseudo-probability - restriction on cost function

Other idea:Treat probability as a diffusion process - Connection with statistical physics Forward dynamics! Sampling (Monte Carlo)!

Continuous Random

Processes

$$
d \mathbf{x}=\mathbf{f}(\mathbf{x}, \mathbf{u}) d t+F(\mathbf{x}, \mathbf{u}) d \boldsymbol{\omega}
$$

Major difficulty: Definition of stochastic processes in continuous time!

Expectations over paths

$$
\Psi_{t_{i}}=E_{\tau_{i}}\left(\Psi_{t_{N}} e^{-\int_{i_{i}^{T}}^{T} \frac{1}{\lambda} q_{t} d t}\right)=E \tau_{\tau_{i}}\left[\exp \left(-\frac{1}{\lambda} \phi_{t_{N}}-\frac{1}{\lambda} \int_{t_{i}}^{t_{N}} q_{t} d t\right)\right]
$$

forward!
... but stochastic

$$
\int p(\tau) \exp \left(-\frac{1}{\lambda} \phi-\frac{1}{\lambda} \int q d t\right) d \tau
$$

$$
\tau=x\left(t \ldots t_{N}\right) \sim p(x, u)
$$

an instance of a random path segment (a random 'number', but in spaces of functions)

$$
E[X]=\int x p(x) d x
$$

Continuous time, \mathbf{x} is function of time $\quad x=f(t)$

Comparison to graphs

 can think of all possibilities of a random walk as graph

When does
'branching' occur?
Idea: do discrete time and take limit

$$
A D D R L
$$

There are several ways to end up in a certain state, each path has an associated probability

Continuous decision

processes

Take random walk and take limits

$d x \rightarrow 0$ $d t \rightarrow 0$
 probability densities
 probability flow

conservation law!

Conserved flow?

You know how to do that!
$\boldsymbol{E T H}_{\text {zürch }}$

Pre-requisite I: Brownian motion

Assume process with probability distribution

$$
\mathbb{P}_{\mathbf{w}}(t, w)=\frac{1}{\sqrt{2 \pi \sigma^{2} t}} \exp \left(-\frac{(w-\mu t)^{2}}{2 \sigma^{2} t}\right)
$$

at any time:

$$
\begin{aligned}
& \mathbb{E}\{w(t)\}=\mu t \\
& \mathbb{V a r}\{w(t)\}=\sigma^{2} t
\end{aligned}
$$

Defined via increment process:

$$
d w(t)=\lim _{\Delta t \rightarrow 0} w(t+\Delta t)-w(t)
$$

1. The increment process, $d w(t)$, has a Gaussian distribution with the mean and the variance, $\mu \Delta t$ and $\sigma^{2} \Delta t$ respectively.
2. The increment process, $d w(t)$, is statistically independent of $w(s)$ for any $s \leq t$.

Simulate Brownian Motion

Integrate discretized increment process:

$$
\begin{aligned}
& w(t+\Delta t)=w(t)+\mu \Delta t+\sqrt{\Delta t \sigma^{2}} \varepsilon, \quad w(0)=0 \\
& \varepsilon \sim N(0,1)
\end{aligned}
$$

... this is a discretized SDE

Figure 3.1: Brownian Motion with $\mu=5$ and $\sigma^{2}=4$法

Equations (SDE)

SDE: $\quad d \mathbf{x}=\mathbf{f}(t, \mathbf{x}) d t+\mathbf{G}(t, \mathbf{x}) d \mathbf{w}$
$\mathbf{w}(t)$
Brownian motion (Wiener Process)
(zero mean, covariance =I)

SDE Integration $d \mathbf{x}=\mathbf{f}(t, \mathbf{x}) d t+\mathbf{G}(t, \mathbf{x}) d \mathbf{w}$

Numerical integration:

use: \quad small time step $\Delta t \quad d \mathbf{w}=\sqrt{\Delta t} \varepsilon$
assumes constant increment: $\quad w(t+\Delta t)=w(t)+\mu \Delta t+\sqrt{\Delta t \sigma^{2}} \varepsilon, \quad w(0)=0$
$\mathbf{x}\left(t_{n+1}\right)=\mathbf{x}\left(t_{n}\right)+\mathbf{f}\left(t_{n}, \mathbf{x}\left(t_{n}\right)\right) \Delta t+\mathbf{G}\left(t_{n}, \mathbf{x}\left(t_{n}\right)\right) \sqrt{\Delta t} \varepsilon, \quad \varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
Process is nonlinear through $f(t, x)$: Non-gaussian
But, for $\Delta t \rightarrow 0$

$$
\mathbb{P}_{\mathbf{x}}(t+\Delta t, \mathbf{x} \mid t, \mathbf{y})=\mathcal{N}\left(\mathbf{y}+\mathbf{f}(t, \mathbf{y}) \Delta t, \mathbf{G}(t, \mathbf{y}) \mathbf{G}^{T}(t, \mathbf{y}) \Delta t\right)
$$

Probabilistic Dynamics

Discrete time: Markov chains

Master Equation
Continuous time:
Jumps: Continuous-time Markov chain
Smooth: Markov Process

Fokker-Planck

Pre-requisite 3: The Fokker-Planck

Equation

Time evolution of probability distribution? (Not a Gaussian process)

Probability distribution is solution of a nonlinear PDE:The Fokker-Planck Equation

Fokker-Planck Equation formal definitions

Assuming stochastic process: $\quad d \mathbf{x}=\mathbf{f}(t, \mathbf{x}) d t+\mathbf{G}(t, \mathbf{x}) d \mathbf{w}$
$\mathbb{P}_{\mathbf{x}(\mathbf{t})}(t=s, \mathbf{x} \mid \tau, \mathbf{y})$ conditional probability distribution of $\mathbf{x}(\mathrm{t})$ given that process at initial time s has value $\mathbf{y}=\mathbf{x}(s)$

Time evolution of prob. distribution:

$$
\partial_{t} \mathbb{P}=-\nabla_{x}^{T}(\mathbf{f} \mathbb{P})+\frac{1}{2} \operatorname{Tr}\left[\nabla_{x x}(\mathbf{G} \mathbb{P})\right]
$$

Fokker-Planck Equation

PDE for time evolution of probability distribution

$$
\frac{\partial}{\partial t} p(x, t)=-\frac{\partial}{\partial x}[\mu(x, t) p(x, t)]+\frac{\partial^{2}}{\partial x^{2}}[D(x, t) p(x, t)]
$$

$d x=\mathbf{f}(x, t) d t+\mathbf{G}(x) d \omega$
brownian motion, no drift $\quad \mathbf{f}\left(\mathbf{x}_{t}, t\right) d t=0 \quad \mathbf{G}\left(\mathbf{x}_{t}\right)=1$

$$
\begin{aligned}
& d \mathbf{x}=d \omega \\
& \Rightarrow \quad \frac{\partial p(x, t)}{\partial t}=\frac{1}{2} \frac{\partial^{2} p(x, t)}{\partial x^{2}} \\
& \quad \Rightarrow p(x, t)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}
\end{aligned}
$$

conservation law!
$\int p(x) d x=1$

Robert F. Stengel

[BB EXAMPLE]

Buchli - OLCAR - 2013

Fokker-Planck Equation

$$
\begin{aligned}
& \frac{\partial}{\partial t} p(x, t)=-\frac{\partial}{\partial x}[\mu(x, t) p(x, t)]+\frac{\partial^{2}}{\partial x^{2}}[D(x, t) p(x, t)] \\
& \text { Drift } \\
& \text { Diffusion }
\end{aligned}
$$

cf. Fluid Dynamics
Heat and Charge diffusion cf. Particle filters

Finance, Biology, Chemistry, Physics, Sociology, Anthropology, Control \& Machine Learning

Stochastic Control

‘Controlled Diffusion’

Controlled Brownian Motion

OPTIMAL CONTROL AND ESTIMATION

Robert F. Stengel

Fokker-Planck modeling is conceptually very useful ... e.g. to develop algorithms

But, naively applying the concept is often not practical

Linearly-Solvable Markov Decision Process

Class of stochastic optimal control problems for which HJB is linear (in Value)

From SOC to LMDP

Assume SDE with control/noise affine form

$$
d \mathbf{x}=\mathbf{f}(t, \mathbf{x}) d t+\mathbf{g}(t, \mathbf{x})(\mathbf{u} d t+d \mathbf{w}), \quad d \mathbf{w} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma} d t)
$$

divide by $d t$ substitute $\frac{d \mathrm{w}}{d t}$ by ε
$\dot{\mathbf{x}}=\mathbf{f}(t, \mathbf{x})+\mathbf{g}(t, \mathbf{x})(\mathbf{u}+\varepsilon), \quad \varepsilon \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$
Cost $\quad J=E\left\{\Phi\left(\mathbf{x}\left(t_{f}\right)\right)+\int_{t_{0}}^{t_{f}} q(t, \mathbf{x})+\frac{1}{2} \mathbf{u}^{T} \mathbf{R u} d t\right\}$
Not LMDP (nonlinear HJB)
$\boldsymbol{E T H}_{\text {zürich }}$

Towards linear HJB

Use HJB for general stoch. cont. time control problem

$$
\beta V^{*}(t, \mathbf{x})-V_{t}^{*}(t, \mathbf{x})=\min _{\mathbf{u}(t)}\left\{L(\mathbf{x}, \mathbf{u}(t))+V_{\mathbf{x}}^{* T} \mathbf{f}_{t}(\mathbf{x}, \mathbf{u}(t))+\frac{1}{2} \operatorname{Tr}\left[V_{\mathbf{x x}}^{*} \mathbf{B}(t) \mathbf{W}(t) \mathbf{B}^{T}(t)\right]\right\}
$$

Substitute (assumptions/definitions):

$$
\begin{array}{ll}
\beta \leftarrow 0 & L(\mathbf{x}, \mathbf{u}(t)) \leftarrow q(t, \mathbf{x})+\frac{1}{2} \mathbf{u}^{T} \mathbf{R} \mathbf{u} \\
\mathbf{f}_{t}(\mathbf{x}, \mathbf{u}(t)) \leftarrow \mathbf{f}(t, \mathbf{x})+\mathbf{g}(t, \mathbf{x}) \mathbf{u} & \mathbf{B}(t) \leftarrow \mathbf{g}(t, \mathbf{x}) \\
\mathbf{W}(t) \leftarrow \mathbf{\Sigma} &
\end{array}
$$

$-\partial_{t} V^{*}(t, \mathbf{x})=\min _{\mathbf{u}}\left\{q(t, \mathbf{x})+\frac{1}{2} \mathbf{u}^{T} \mathbf{R} \mathbf{u}+\nabla_{x}^{T} V^{*}(t, \mathbf{x})(\mathbf{f}(t, \mathbf{x})+\mathbf{g}(t, \mathbf{x}) \mathbf{u})+\frac{1}{2} \operatorname{Tr}\left[\nabla_{x x} V^{*}(t, \mathbf{x}) \mathbf{g}(t, \mathbf{x}) \boldsymbol{\Sigma} \mathbf{g}^{T}(t, \mathbf{x})\right]\right\}$

HJB Equation
 of control affine opt. ctrl problem

$$
-\partial_{t} V^{*}(t, \mathbf{x})=\min _{\mathbf{u}}\left\{q(t, \mathbf{x})+\frac{1}{2} \mathbf{u}^{T} \mathbf{R} \mathbf{u}+\nabla_{x}^{T} V^{*}(t, \mathbf{x})(\mathbf{f}(t, \mathbf{x})+\mathbf{g}(t, \mathbf{x}) \mathbf{u})+\frac{1}{2} \operatorname{Tr}\left[\nabla_{x x} V^{*}(t, \mathbf{x}) \mathbf{g}(t, \mathbf{x}) \boldsymbol{\Sigma} \mathbf{g}^{T}(t, \mathbf{x})\right]\right\}
$$

gradient of RHS $=0$ yields

$$
\mathbf{u}^{*}(t, \mathbf{x})=-\mathbf{R}^{-1} \mathbf{g}^{T}(t, \mathbf{x}) \nabla_{x} V(t, \mathbf{x})
$$

Optimal control

'Cost of controls to get improvement'

EMH zürich

Optimal HJB

substitute opt. control back into $\mathrm{HJB} \Rightarrow$

$$
\mathbf{u}^{*}(t, \mathbf{x})=-\mathbf{R}^{-1} \mathbf{g}^{T}(t, \mathbf{x}) \nabla_{x} V(t, \mathbf{x})
$$

$$
-\partial_{t} V^{*}=q-\frac{1}{2} \nabla_{x}^{T} V^{*} \mathbf{g} \mathbf{R}^{-1} \mathbf{g}^{T} \nabla_{x} V^{*}+\nabla_{x}^{T} V^{*} \mathbf{f}+\frac{1}{2} \operatorname{Tr}\left[\nabla_{x x} V^{*} \mathbf{g} \boldsymbol{\Sigma} \mathbf{g}^{T}\right]
$$

Nonlinear PDE!

Optimal HJB

substitute opt. control back into $\mathrm{HJB} \Rightarrow$
$\mathbf{u}^{*}(t, \mathbf{x})=-\mathbf{R}^{-1} \mathbf{g}^{T}(t, \mathbf{x}) \nabla_{x} V(t, \mathbf{x})$

$$
-\partial_{t} V^{*}=q-\frac{1}{2} \nabla_{x}^{T} V^{*} \mathbf{g} \mathbf{R}^{-1} \mathbf{g}^{T} \nabla_{x} V^{*}+\nabla_{x}^{T} V^{*} \mathbf{f}+\frac{1}{2} \operatorname{Tr}\left[\nabla_{x x} V^{*} \mathbf{g} \boldsymbol{\Sigma} \mathbf{g}^{T}\right]
$$

Nonlinear PDE!

short notation, replace: $\mathbf{g ~ R}^{-1} \mathbf{g}^{T}$ by $\boldsymbol{\Xi}$
add'l assumption: control cost linked to noise

$$
\mathbf{R} \boldsymbol{\Sigma}=\lambda \mathbf{I} \quad \Rightarrow \mathbf{g} \boldsymbol{\Sigma} \mathbf{g}^{T}=\lambda \boldsymbol{\Xi}
$$

log transform

$-\partial_{t} V^{*}=q-\frac{1}{2} \nabla_{x}^{T} V^{*} \boldsymbol{\Xi} \nabla_{x} V^{*}+\nabla_{x}^{T} V^{*} \mathbf{f}+\frac{\lambda}{2} \operatorname{Tr}\left[\nabla_{x x} V^{*} \boldsymbol{\Xi}\right]$

Desirability Ψ

Log transform

$$
V^{*}(t, \mathbf{x})=-\lambda \log \Psi(t, \mathbf{x})
$$

Nonlinear PDE!

$$
\begin{aligned}
\partial_{t} V^{*}(t, \mathbf{x}) & =-\lambda \frac{\partial_{t} \Psi}{\Psi} \\
\nabla_{x} V^{*}(t, \mathbf{x}) & =-\lambda \frac{\nabla_{x} \Psi}{\Psi} \\
\nabla_{x x} V^{*}(t, \mathbf{x}) & =\frac{1}{\lambda} \nabla_{x} V^{*} \nabla_{x}^{T} V^{*}-\lambda \frac{\nabla_{x x} \Psi}{\Psi}
\end{aligned}
$$

rewrite scalar expression:

$$
-\frac{1}{2} \nabla_{x}^{T} V^{*} \boldsymbol{\Xi} \nabla_{x} V^{*}=-\frac{1}{2} \operatorname{Tr}\left[\nabla_{x}^{T} V^{*} \boldsymbol{\Xi} \nabla_{x} V^{*}\right]=-\frac{1}{2} \operatorname{Tr}\left[\nabla_{x} V^{*} \nabla_{x}^{T} V^{*} \boldsymbol{\Xi}\right]
$$

substitute into HJB:

$$
\lambda \frac{\partial_{t} \Psi}{\Psi}=q-\frac{1}{2} \operatorname{Tr}\left[\nabla_{X} V^{*} \nabla_{x}^{T} V^{*} \boldsymbol{\Xi}\right]-\lambda \mathbf{f}^{T} \frac{\nabla_{x} \Psi}{\Psi}+\frac{1}{2} \operatorname{Tr}\left[\nabla_{X} V^{*} \nabla_{x}^{T} V^{*} \boldsymbol{\Xi}\right]-\frac{\lambda^{2}}{2} \operatorname{Tr}\left[\frac{\nabla_{x x} \Psi}{\Psi} \boldsymbol{\Xi}\right]
$$

multiply both sides by $-\Psi / \lambda$

Linear HJB for desirability

$$
-\partial_{t} \Psi=-\frac{1}{\lambda} q \Psi+\mathbf{f}^{T} \nabla_{x} \Psi+\frac{\lambda}{2} \operatorname{Tr}\left[\boldsymbol{\Xi} \nabla_{x x} \Psi\right]
$$

Linear PDE in desirability Ψ

$$
\begin{aligned}
& \text { equivalent form: } \\
& -\partial_{t} \Psi=\mathrm{H}[\Psi] \quad \begin{aligned}
\mathrm{H} & =-\frac{1}{\lambda} q+\mathrm{f}^{T} \nabla_{x}+\frac{\lambda}{2} \operatorname{Tr}\left[\boldsymbol{\Xi} \nabla_{x x}\right] \\
& =-\frac{1}{\lambda} q+\sum_{i} \mathbf{f}_{i} \frac{\partial}{\partial_{x_{i}}}+\frac{\lambda}{2} \sum_{i, j} \boldsymbol{\Xi}_{i j} \frac{\partial^{2}}{\partial_{x_{i}} \partial_{x_{j}}}
\end{aligned}
\end{aligned}
$$

linear, but still no analytic solution for arbitrary $q(x, t)$ could solve backward terminal condition $\Psi\left(t_{f}, \mathbf{x}\right)=\exp \left(-\frac{1}{\lambda} \Phi(x)\right)$

Forward solution through diffusion process

$$
-\partial_{t} \Psi=-\frac{1}{\lambda} q \Psi+\mathbf{f}^{T} \nabla_{x} \Psi+\frac{\lambda}{2} \operatorname{Tr}\left[\boldsymbol{\Xi} \nabla_{x x} \Psi\right]
$$

Can solve this equation using 'forward diffusion process'

$$
\Psi_{t_{i}}=E \tau_{i}\left(\Psi_{t_{N}} e^{-\int_{t_{i}^{N}}^{t_{N}} \frac{1}{\lambda} q_{i} d t}\right)=E \tau_{\tau_{i}}\left[\exp \left(-\frac{1}{\lambda} \phi_{t_{N}}-\frac{1}{\lambda} \int_{t_{i}}^{t_{N}} q_{t} d t\right)\right]
$$

path drawn from
random process
forward! ... but stochastic

Credits

material from:

Sutton \& Barto's book: http:// webdocs.cs.ualberta.ca/~sutton/book/thebook.html

Bishop: Pattern Recognition and Machine Learning

Feynman Lectures

