캐zürich

Exercise 1: OLCAR

LQR \rightarrow ILQC

D R L OLCAR-Exercise 1

General Information

- Download from http://www.adrl.ethz.ch/doku.php/adrl:education:lecture:fs2015
- Code/Answers submitted by Wed, 15.4 through website
- Code (only *_Design.m files)
- Pdf (max. 1 page): 1-3 sentences per question
- Interviews on Fr, 17.4
- Group signup for timeslots will be available on course website
- 10min interview/group
- Graded pass/fail
- Grade boost: Ex.1: +0.1, Ex. 2: +0.05, Ex 3. +0.1
- Office hours as usual for questions

Introduction

- Goal of exercises 1 \& 3: design a controller for a quadrotor
- Exercise 1: Model-based ILQC controller
- Model accurate and complies with simulation/reality
- (Exercise 2: Reinforcement learning)
- Exercise 3: Adapt bias-model based controller
- Controller model and simulation model differ

GHzürich

Quadrotor - AscTec Hummingbird

Technical Data - AscTec Hummingbird

\(\left.$$
\begin{array}{ll}\text { UAV Type } & \text { Quadcopter } \\
\hline \begin{array}{l}\text { Onboard } \\
\text { computer }\end{array} & \begin{array}{l}\text { Up to Intel® Atom } \\
\text { ZM }\end{array}
$$

\hline Size Processor\end{array}\right]\)| Max. take off
 weight | $0,71 \mathrm{~kg}$ |
| :--- | :--- |
| Max. payload | 200 g |
| Flight time incl.
 payload | 20 min. |
| Range | $4,500 \mathrm{~m} \mathrm{ASL}, 1,000 \mathrm{~m} \mathrm{AGL}$ |
| Max. airspeed | $15 \mathrm{~m} / \mathrm{s}$ |
| Max. climb rate | $5 \mathrm{~m} / \mathrm{s}$ |
| Max. thrust | 20 N |

http://www.asctec.de/en/uav-uas-drone-products/asctec-hummingbird/\#pane-0-1

Quadcopter Model

- State $\mathbf{x}=[x, y, z, \phi, \theta, \psi, \dot{x}, \dot{y}, \dot{z}, \dot{\phi}, \dot{\theta}, \dot{\psi}]^{T} \in \mathbb{R}^{12}$
- Input $\mathbf{u}=\left[F_{z}, M_{x}, M_{y}, M_{z}\right]^{T} \in \mathbb{R}^{4}$
- System dynamics:
- underactuated
- non-linear [Model.f_mode1(x,u)]
$\dot{\mathbf{x}}=\mathbf{F}(\mathbf{x}, \mathbf{u})=\mathbf{f}(\mathbf{x})+\mathbf{g}(\mathbf{x}) \mathbf{u}$

Exercise 1: Move quadrotor to goal state

- LQR
- LQR with via point
- ILQC
- ILQC with via point

ㅌHzürich

main_ex1.m:

- Task_Design
- Cost_Design
- LQR_Design
- ILQC_Design
- (Visualization)

배zürich

- main_ex1.m:

- LQR_Design

Problem 1.1: Compute LQR feedback gain K

- Linearize system dynamics (A,B):

$$
\dot{\mathbf{x}}=\mathbf{F}(\mathbf{x}, \mathbf{u})=\mathbf{f}(\mathbf{x})+\mathbf{g}(\mathbf{x}) \mathbf{u}
$$

$$
\text { e.g. Model.Alin\{1\}(x_lin,u_lin, Model.param.syspar_vec),... }
$$

$$
\dot{\mathbf{x}}=\mathbf{A}_{l i n}\left(\mathbf{x}_{l i n}\right) \mathbf{x}+\mathbf{B}_{l i n}\left(\mathbf{u}_{l i n}\right) \mathbf{u}
$$

- Cost function (Q,R)
- (given in Cost_Design.m)
- Matlab

ㅋHzürich

Problem 1.2: Controller structure

- For every time-step n: Feedback and feedforward elements combined in $\theta_{n} \in \mathbb{R}^{13 \times 4}$

$$
\begin{aligned}
\mathbf{u}_{n}= & =\mathbf{u}^{f f}+\mathbf{u}^{f b} \\
& =\mathbf{u}^{f f}+K\left(\mathbf{x}-\mathbf{x}_{d}\right) \\
& =\left[\begin{array}{ll}
\mathbf{u}^{f f}-K \mathbf{x}_{d} & K
\end{array}\right]\left[\begin{array}{c}
1 \\
\mathbf{x}
\end{array}\right] \\
& =\theta_{n}^{T} \mathbf{x}_{a u g}
\end{aligned}
$$

- $\theta \in \mathbb{R}^{13 \times 4 \times N_{t}}$

Problem 1.2: Design controller from K

- Task: Move quadrotor to goal position at $\mathbf{x}_{d}(1)=10 \mathrm{~m}$
- Define metric LQR controller tries to regulate to zero
- $\mathbf{u}=K(\ldots$
- Incorporate that in controller structure (design θ)
- Run and observe...
- (Change cost matrices, goal positions, metric,...)

Problem 1.3: Include via-points

- Task: Move quadrotor through specific states before reaching the goal state.
- Time-varying control law
- θ_{n} changes over time
- Observe and run

Problem $1 \checkmark$

- Finished designing LQR controller
- Protected function "LQR_Design_Solution.p" available
- \rightarrow Adapt main_ex1.m.

EHzürich

- LQR Design

Problem 2.1: Design ILQC Controller

ILQC_Design.m

- LQR: system dynamics linearized around one linearization point
- \rightarrow linear time-invariant system
- ILQC: system dynamics linearized around each discretized state (50 Hz)
- \rightarrow linear time-variant system

Problem 2.1: Design ILQC Controller

- (Discretization) :

$$
\begin{array}{rlrl}
\dot{\mathbf{x}} & =\mathbf{A} \mathbf{x}+\mathbf{B u} \\
\Leftrightarrow & \frac{\mathbf{x}_{n+1}-\mathbf{x}_{n}}{\delta t} & =\mathbf{A} \mathbf{x}_{n}+\mathbf{B} \mathbf{u}_{n} \\
\Leftrightarrow & \mathbf{x}_{n+1} & =(\mathbf{I}+\mathbf{A} \delta t) \mathbf{x}_{n}+(\mathbf{B} \delta t) \mathbf{u}_{n} \\
\Leftrightarrow & \mathbf{x}_{n+1} & =\mathbf{A}_{n} \mathbf{x}_{n}+\mathbf{B}_{n} \mathbf{u}_{n}
\end{array}
$$

(continous system dynamics)

(discrete system dynamics)

- Run and observe...
- Protected function ILQC_Design_Solution.p available

배zürich

- main_ex1.m:

- Cost_Design

ㅋHzürich

Problem 2.2: Include via-points

- Append ILQC cost function
- Penalizes deviation from via point $\mathbf{x}_{v p}$ only in proximity of time $t_{v p}$.
- $L_{v p}(t)=\left(\mathbf{x}-\mathbf{x}_{v p}\right)^{\top} \mathbf{Q}_{v p} \cdot \sqrt{\frac{\rho}{2 \pi}} e^{\left(-\frac{\rho}{2}\left(t-t_{v p}\right)^{2}\right)}\left(\mathbf{x}-\mathbf{x}_{v p}\right)$
- Run and observe
- Use different via points
- Compare to LQR

EHzürich

