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Introduction

The goal of exercise 1 is to design an ILQC controller that is able to control a quadrotor for performing agile

maneuvers such as flying to a defined point and/or passing through some predefined via-points. To fulfill

these tasks, suitable cost functions are minimized based on the principle of optimality and the assumption

of complete system model knowledge. The designed controllers in this exercise will be time-varying, linear

feedback plus feedforward controllers.

In this exercise set we will assume complete knowledge about the system model, i.e. without any uncertainty

about the system parameters. Having this model, we are able to design a model-based controller for

stabilizing and controlling the robot. Later, in exercise 3, we will put aside the assumption of complete

model knowledge. This means that the true system’s parameters are unknown and we have just a biased

estimation of them. However, we assume that we can still draw samples from the true system.

This in fact is a real scenario when we are dealing with an actual robot. Although often we have a model of

the robot dynamics, the model is based on some assumptions and simplifications. Therefore the designed

controller based on this model performs noticeably different on the real robot. In this case, we implement

an adaption mechanism which adapts the model-based controller on fly.

Exercise 1 and 3 are trying to emulate such a scenario. In exercise 1 we are going to design a model-based

controller based on a given model. Later, in exercise 3, we will assume that the given model is biased. In

the case of the ILQC controller this means that the linearized model and the provided simulator will not

comply with each other even at the first order approximation of the dynamics. In exercise 3, we are going

to implement a learning algorithm which tries to adapt the biased model-derived controller to the unknown

model of the simulator.

On the course website http://www.adrl.ethz.ch/doku.php/adrl:education:lecture:fs2015 a skele-

ton of the matlab software can be downloaded. Please complete the missing parts and upload your

{*_Design.m} files through the appropriate form on the website. Additionally upload a .pdf with the

answers to the posed questions (no more than 3 sentences per question, max. 1 A4 page in total). All this

material must be uploaded by 15.04.2013, 11:59 pm.

Robotics platform

The main platform for the exercise 1 and 3 is a quadrotor as shown in Fig. 1. The state x of this robot is

defined by its center of the mass positions x, y, z, the body orientations φ, θ, ψ (roll, pitch, yaw) and their

derivatives. The inputs u that control the system are the vertical thrust Fz and the moments Mx,My,Mz
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Figure 1: AscTec Hummingbird [1]. Figure 2: Simulated trajectory with via-point.

around each axis. The continuous-time nonlinear system dynamics are thus given by

ẋ = F(x,u) = f(x) + g(x)u (1)

where x = [x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇]T and u = [Fz,Mx,My,Mz]
T .

As equation (1) indicates, this system is underactuated with two degree of underactuation. It has in total

twelve states i.e. six degrees of freedom and its actuation degree is four. In the simulated quadrotor in

these exercises, the actuator dynamics are neglected although the rotor saturations are still maintained.

Also no aerodynamics such as turbulence effect or ground effect are modeled.

Software Structure

The main structure of the code is defined in main_ex1.m. The parts to implement are located in separate

functions and highlighted by cell ’%%’ comments. A brief overview of the steps executed in the main

function is given below:

• Task = Task_Design() defines an initial Task including start and goal state, time constraint and

other requirements on a high level.

• load(’Quadcopter_Model.mat’,’Model’) defines the dynamics of the quadrotor (equation 1)

including mass and thrust coefficients etc. It also provides functions such as Model.Alin(x,u,...)

which returns the linearized-system-dynamics state-transition matrix A around point (x,u).

• Task.cost = Cost_Design(Model.param.mQ,Task) transforms the high level requirements of the

specified Task into a cost function that reflects these intentions.
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• LQR_Design(Model,Task) designs an LQR controller for the given Task.

• ILQC_Design(Model,Task,Initial_Controller,@Quad_Simulator) designs an ILQC controller

for the given task and model. An initial controller for the first rollout and a simulator to generate

the rollouts are specified.

• sim_out = Quad_Simulator(Model,Task,Controller) generates a trajectory of states and con-

trol inputs by applying the designed controller to the system. This trajectory can be visualized

Visualize(sim_out,...) and/or plotted Plot_Result(sim_out,...} by commenting in the ap-

propriate lines.

Problem 1

Before designing an ILQC controller we will try to accomplish this task with a standard LQR controller [2].

Please implement the solutions in LQR_Design.m.

1. Calculate LQR feedback gains: Design an infinite-horizon LQR controller. Since such a controller

requires linearized system dynamics the linearization point (operating point) must be correctly chosen.

The quadratic cost function is already given in Task.cost.

Hint: The continuous linearized model of the system around the nominal state and input trajectories

is provided by Model.Alin{1}(x,u,Model.param.syspar_vec) as a function of state and control

input vectors

δẋ = Alinδx+Blinδu (2)

where Alin = ∂F
∂x , Blin = ∂F

∂u . In order to design the infinite-horizon LQR, you can either directly use

the continuous-time algebraic Riccati equation (help lqr) or you can time-discretize the linearized

model and then use the discrete-time algebraic Riccati equation (help dlqr). For sufficiently fine

time-discretization both approaches will generate comparable results. If you choose the discretization

approach use the sampling time defined in Task.dt which is sufficiently small for this task.

2. Design LQR controller with one goal state: The quadrotor controller structure allows to im-

plement feedforward inputs uff (not depended on current state x) and feedback inputs ufb. The

controller requires these to be specified in form of θn ∈ R(1+nx)×nu , with the number of states
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nx = 12 and the number of control inputs nu = 4, defined as:

un = (Fz,Mx,My,Mz)
T = uff + ufb (3)

= uff +K(x− xref )

=
[
uff −Kxref K

] [1
x

]
= θT

nxaug

Each time step n = 0, ...N requires such a θn matrix. These matrices are layered for every time

step n to produce θ ∈ R(1+nx)×nu×N . For a time-varying controller where feedforward inputs and

feedback gains change over time (e.g. with a via-point) the individual θn change over the dimension

n.

The goal of this task is to correctly fill the matrix θ to drive the system to the defined goal state

Task.goal_x. Since by definition LQR regulates the system to zero, this goal state must be correctly

included in the controller structure. When ready, run main_ex1.m and observe the visualization.

Question 1 : How does the controller behave with varying positions of the Task.goal_x?

Question 2 : What is the cause of the varying performance (model, cost function,...)?

Question 3 : How do changes in Task.cost.Q_lqr and Task.cost.R_lqr affect the behavior?

3. Design LQR controller with a via-point: After observing the behavior of the previous controller,

it might be helpful to include an intermediate via-point Task.vp1 that the controller should drive

towards until Task.vp_time before aiming towards Task.goal_x. Redesign the matrix θ to reflect

this task, change lqr_type = ’goal_state’ to ’via_point’ and run main_ex1.m to observe the

behavior.

Question 4 : How does a via-point change behavior of the LQR controller?

Question 5 : Why is the system capable of reaching further away Task.goal_x states?

Question 6 : Defining via points Task.vp and time Task.vp_time seem to have a positive influence

on the system behavior and increase stability. What are the disadvantages?

Problem 2

In this problem you will design the actual ILCQ controller [4] as introduced in the script and compare

it with the two previously designed LQR controllers for the same tasks. The ILQC controller must be

initialized with a state and input trajectory, which we generate by the previously designed LQR controller

Initial_Controller.
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1. Design the ILQC controller: The implementation of this problem is done in ILQC_Design.m.

Follow script section 1.6 to fill in the missing code. Test the algorithm by removing return; in

main_ILQC.m and run it.

Hint: The ILQC controller requires discretized linearized system dynamics An,Bn, whereas the

quadrotor model supplies continuous linearized system dynamics Alin,Blin. A simple approximation

between the two is given as follows:

ẋ = Alinx+Blinu (4)

⇔ xn+1 − xn

δt
= Alinxn +Blinun

⇔ xn+1 = (I+Alinδt)xn + (Blinδt)un

Question 7 : How do the trajectories of the LQR and ILQC controller differ? How do the costs

compare?

Question 8 : Why does the ILQC perform better for distant and similarly well for close goal states?

2. Include via-points for the ILQC controller to pass through: For your convenience we provide the

solution to the previous exercise in private/Design_functions/[ILQC/LQR]_Design_Solution.p.

To use these, append “ Solution” to the respective function calls in main_ex1.m.

The goal of this sub problem is to make the quadrotor pass through via-points as in the LQR

controller and compare the performance. This part of the exercise must be implemented in done

in the Cost_Design.m. We are interested in passing through the via-point in a smooth motion,

allowing the ILQC algorithm to determine an optimal velocity on its own. Define a new final Cost.h

and intermediate cost Cost.l including this via-point cost. Change ilqc_type = ’goal_state’

to ’via_point’ and run main_ex1.m. Additionally, try ILQC with the more complex via point

Task.vp2. In contrast, observe how the LQR controller behaves with this via point.

Hint: In contrast to the LQR controller, the ILQC controller includes via-points in the cost function

in Cost_Design.m. The time dependent via-point cost Lvp(t) is added to the intermediate cost to

drive the robot towards the via-point. It can be seen as a ρ-steep bell shaped curve with it’s peak

at the time tvp this via point should be reached. For other times the effect of this cost is negligible.

For more information see [3]. The cost is implemented in viapoint(.) as follows:

Lvp(t) = (x− xvp)
>Qvp (x− xvp) ·

√
ρ

2π
e(−

ρ
2
(t−tvp)2) (5)
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Question 9 : How must the via-point weighting matrix Q_vp be chosen for the algorithm to determine

the optimal via-point velocity on its own?

Question 10 : How can exact passing through the via point be enforced and how can it be included

only as a soft suggestions on top of the other performance criteria?
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