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Introduction

In this exercise you will solve an optimal control problem on two different simple toy systems. Different

algorithms will be used to solve the two problems, allowing you to get experience implementing a wide

range of Reinforcement Learning methods.

On the course website http://www.adrl.ethz.ch/doku.php/adrl:education:lecture:fs2015 the

software framework for the exercise can be downloaded. Please complete the missing sections and upload

your *_Design.m files through the appropriate form on the website. Additionally upload a .pdf with the

answers to the posed questions (no more than 3 sentences per question, max. 1 A4 page in total). All of

this material must be uploaded by 06.05.2015, 11:59 pm.

Exercise 2a: Mountain Car

In this problem an under-powered car must go up a hill which is too steep for it to drive up directly. Instead

it should bounce back and forth to gain enough velocity to climb up. We will consider a two dimensional

state space of position x and velocity v. The range of allowed positions is [−1.2,+0.5] and the velocity is

bounded in the range [−0.07,+0.07]. The car’s actuation is represented as an acceleration, a, in the range

[−1,+1]. The dynamic equation of the car is given as:

v(t+ 1) = bound [v(t) + 0.001a(t)− 0.0025 cos (3x(t))]

x(t+ 1) = bound [x(t) + v(t+ 1)] ,

where the function bound maintains the value of x and v within the limits. Whenever the car reaches the

position limits, its velocity is set to zero so that it remains there indefinitely. When the car reaches the

top of the hill, it gets a reward of +10. Otherwise, it gets a reward of -1 for every time step in which it

doesn’t reach the top.

Step 1: Because the system has continuous states and actions, the first step of this exercise will be to

discretize the system so that MDP-based Reinforcement Learning methods can be applied. You will see

that discretization is not trivial for this system. To effectively discretize the system, a stochastic discrete

model should be created, even though the continuous system is deterministic.

1

http://www.adrl.ethz.ch/doku.php/adrl:education:lecture:fs2015


OLCAR - Exercise 2
Handout: 21.04.2015
Due: 06.05.2015

A D R L

The mountain car problem: An under-powered car must go up a steep hill

Step 2: The second step of the problem will be to implement the Generalized Policy Iteration (GPI)

algorithm and use it to find an optimal policy for the discretized system modeled in Step 1. You should

then simulate the system using the controller found and analyze its performance. The algorithm should be

tested with the algorithm set to perform Policy Iteration and Value Iteration.

Software: All of the code for the Mountain Car problem is in the /Mountain_Car directory of the

provided code. The code should be run using the ./main_ex2a.m script. Solutions to the two steps

of the problem should be implemented in the provided ./Design_functions/MDP_Design.m and ./

Design_functions/GPI_Design.m functions. The system dynamics are simulated for a single time-

step in the function ./Model/Mountain_Car_Single_Step.p and over an entire trajectory in ./Model/

Mountain_Car_Simulator.p. Simulation output can be plotted and visualized using ./Visualization/

visualizeMountainCar.p. Working solutions are provided in the functions ./Design_functions/MDP_

Design_Solution.p and ./Design_functions/GPI_Design_Solution.p. These functions can be run

using different tuning parameters by modifying the values set in the corresponding *_Params struct in

./main_ex2a.m.

The following table lists important parameters for both steps of the problem, along with suggested nominal

values which have been found to work sufficiently using the solution code. These values are not the best

possible values, but are instead intended to serve as a benchmark during algorithm development.

Exercise 2a Questions:

Question 1 : Build a probabilistic model of the system. What is the stochastic element in the modeling

process and what is its significance? What modeling parameters have the most effect on the quality of the

solution?
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Parameter Description Value
pos_N Number of bins used for car position discretization 20

vel_N Number of bins used for car velocity discretization 20

u_N Number of bins used for car action discretization 5

modeling_iter Number of modeling iterations performed for each state-action pair.
When set to 1, this builds a deterministic model

50

maxIter_PE Maximum number of iterations allowed during Policy Evaluation 100

maxIter_PI Maximum number of iterations allowed during Policy Improvement 100

minDelta_V Minimum change in the value function allowed before terminating Policy
Evaluation

0.01

minDelta_Policy Minimum change in the policy allowed before terminating Policy Improve-
ment

0.1

alpha Decay factor used when calculating the accumulated reward 0.95

Question 2 : Implement the Generalized Policy Improvement algorithm introduced in Section 2.8.3. Use

appropriate terminal conditions for Policy Evaluation and Policy Improvement processes and implement the

Policy Iteration and the Value Iteration algorithms. Think about what the optimal solution to this task

should be for the Mountain Car system. Was the learning algorithm able to find this solution? If not, why

do you think that is the case?

Question 3 : Now build a deterministic discrete state-action space model of the system (i.e. set the

number of modeling iterations to 1). Is it possible to find a policy which reaches the goal? What problems

are faced when discretizing the system in this way?

Exercise 2b: Cliff World

The Cliff World problem is a grid world problem used for highlighting the difference between on-policy

(Monte Carlo) and off-policy (Q-learning) learning methods. A map of the cliff world is shown below. In

this task, an agent starts from S and tries to reach G along shortest path without falling off of the cliff.

At each time step, the agent can move up, down, left, or right. The reward is -1 for all of the transitions

except those which move the agent to regions marked ’cliff’, where instead the agent gets a reward of -100

and is sent back to the start. Once the agent reaches G, the task is terminated. The system dynamics are

deterministic and agent always moves where it intends. Despite the simplicity of the problem, learning an

optimal policy without any prior information about the rewards in the grid world can be cumbersome.
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The Cliff Walking problem map

Step 1: The first step of the Cliff World problem is to implement the On-policy Monte Carlo method

to find an optimal controller which leads the agent to the goal using the shortest path possible. To do

this, you should generate training episodes in which the agent follows some ε-greedy policy. After each

episode, the policy should be improved based on the observations of that episode using model-free Policy

Improvement. For this problem you only need to consider a constant ε, though the algorithm will also work

with ε decreasing over subsequent iterations.

Step 2: Now solve the same optimal control problem, but using the off-policy Q-Learning algorithm.

Once again, you should generate training episodes in which the agent follows an ε-greedy policy. Learning

should now be done during the training episodes, however. The algorithm should be tested for both a

constant ε and ε decreasing over subsequent iterations.

Software: The software structure for exercise 2b is very similar to that of 2a. The code is given in

/Cliff_World. The code should be run using the ./main_ex2b.m script. Solutions to the two steps of the

problem should be implemented in the provided ./Design_functions/Monte_Carlo.m and ./Design_

functions/Q_Learning.m functions. The system dynamics are simulated using ./Model/Cliff_World.

p. Learning progress can be plotted after every iteration of each algorithm using ./Visualization/

RewardPlotter.p and the final path followed by a policy executed greedily on the learned Q-table is plotted

using ./Visualization/VisualizeCliffWorld.p. Working algorithms are provided in the functions

./Design_functions/Monte_Carlo_Solution.p and ./Design_functions/Q_Learning_Solution.

p. These functions can be run using different tuning parameters by modifying the values set in the

corresponding *_Params struct in ./main_ex2a.m.

The following table lists important parameters for the two algorithms to be implemented in this exercise.

Nominal values are given separately for each algorithm. These values are not the best possible values, but

are instead intended to serve as a benchmark during algorithm development. In particular, the Monte Carlo

4



OLCAR - Exercise 2
Handout: 21.04.2015
Due: 06.05.2015

A D R L

algorithm may not converge to a valid solution with the parameters given due to the stochasticity in the

policy execution.

Parameter Description MC Value QL Value
epsilon Initial value for the ’greediness’ of the policy. Set

this to 0.0 for a purely greedy policy
0.3 0.1

k_epsilon Gain applied to ε after each learning iteration.
εn+1 = εn ∗ kepsilon

1 0.995

training_iterations Number of training episodes 500 500

episode_length Maximum number of time steps to evaluate in
each training episode

500 500

omega Learning rate 0.1 0.1

alpha Decay factor used when calculating the accumu-
lated reward

1 1

Exercise 2a Questions:

Question 4 : First implement the Monte Carlo algorithm. Test the algorithm using different values of ε.

What impact does ε have on the solution? Can the algorithm find the optimal greedy policy?

Question 5 : Now implement the Q-Learning algorithm. First test the algorithm with decreasing exploration

during learning (i.e. k_epsilon< 1). Next, test the algorithm using constant exploration during learning

(i.e. k_epsilon= 1). How does k_epsilon influence the solution?

Question 6 : Compare the computational efficiency and performance of the Monte Carlo and Q-Learning

algorithms. What are the fundamental reasons why one algorithm performs better than the other?
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